Citation: | Huang Yangyang,Pan Hao,Xie Xiaohui. Asymmetric of anticyclonic jet at the bottom of deep-sea seamounts[J]. Haiyang Xuebao,2025, 47(6):1–12 doi: 10.12284/hyxb2025053 |
[1] |
Gevorgian J, Sandwell D T, Yu Yao, et al. Global distribution and morphology of small seamounts[J]. Earth and Space Science, 2023, 10(4): e2022EA002331. doi: 10.1029/2022EA002331
|
[2] |
Mai Hongtao, Wang Dongxiao, Chen Hui, et al. Mid-deep circulation in the western South China sea and the impacts of the central depression belt and complex topography[J]. Journal of Marine Science and Engineering, 2024, 12(5): 700. doi: 10.3390/jmse12050700
|
[3] |
Jiang Xingliang, Dong Changming, Ji Yuxiang, et al. Influences of deep-water seamounts on the hydrodynamic environment in the northwestern pacific ocean[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017396. doi: 10.1029/2021JC017396
|
[4] |
Perfect B, Kumar N, Riley J J. Vortex structures in the wake of an idealized seamount in rotating, stratified flow[J]. Geophysical Research Letters, 2018, 45(17): 9098−9105. doi: 10.1029/2018GL078703
|
[5] |
Shu Yeqiang, Wang Jinghong, Xue Huijie, et al. Deep-current intraseasonal variability interpreted as topographic rossby waves and deep eddies in the Xisha Islands of the South China Sea[J]. Journal of Physical Oceanography, 2022, 52(7): 1415−1430. doi: 10.1175/JPO-D-21-0147.1
|
[6] |
Carter G S, Gregg M C, Merrifield, M A. Flow and mixing around a small seamount on Kaena Ridge, Hawaii[J]. Journal of Physical Oceanography, 2006, 36(6): 1036−1052. doi: 10.1175/JPO2924.1
|
[7] |
Nikurashin M, Ferrari R. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean[J]. Geophysical Research Letters, 2011, 38(8): L08610.
|
[8] |
Taylor G I. Experiments on the motion of solid bodies in rotating fluids[J]. Proceedings of the Royal Society of London - Series A: Containing Papers of a Mathematical and Physical Character, 1923, 104(725): 213−218.
|
[9] |
Lavelle J W, Mohn C. Motion, commotion, and biophysical connections at deep ocean seamounts[J]. Oceanography, 2010, 23(1): 90−103. doi: 10.5670/oceanog.2010.64
|
[10] |
White M, Mohn C. Seamounts: A review of physical processes and their influence on the seamount ecosystem (OASIS Report)[R]. Ireland: NUI, Gaiway, 2004.
|
[11] |
Chapman D C, Haidvogel D B. Formation of Taylor caps over a tall isolated seamount in a stratified ocean[J]. Geophysical & Astrophysical Fluid Dynamics, 1992, 64(1/4): 31−65.
|
[12] |
Haidvogel D B, Beckmann A. Chapman D C, et al. Numerical simulation of flow around a tall isolated seamount. Part II: Resonant generation of trapped waves[J]. Journal of Physical Oceanography, 1993, 23(11): 2373−2391. doi: 10.1175/1520-0485(1993)023<2373:NSOFAA>2.0.CO;2
|
[13] |
Xu G, Lavelle J W. Circulation, hydrography, and transport over the summit of axial seamount, a deep volcano in the Northeast Pacific[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5404−5422. doi: 10.1002/2016JC012464
|
[14] |
Guo Binbin, Wang Weiqiang, Shu Yeqiang, et al. Observed deep anticyclonic cap over Caiwei Guyot[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2020JC016254. doi: 10.1029/2020JC016254
|
[15] |
Beckmann A, Mohn C. The upper ocean circulation at great meteor seamount Part II: retention potential of the seamount induced circulation[J]. Ocean Dynamics, 2002, 52(4): 194−204. doi: 10.1007/s10236-002-0018-3
|
[16] |
White M, Bashmachnikov I, Arístegui J, et al. Physical processes and seamount productivity[M]//Pitcher T J, Morato T, Hart P J B, et al. Seamounts: Ecology, fisheries and conservation, Oxford, UK: Wiley Online Library, 2007: 65−84.
|
[17] |
Ye Ruijie, Shang Xiaodong, Zhao Wei, et al. Circulation driven by multihump turbulent mixing over a seamount in the South China Sea[J]. Frontiers in Marine Science, 2022, 8: 794156. doi: 10.3389/fmars.2021.794156
|
[18] |
Owens W B, Hogg N G. Oceanic observations of stratified Taylor columns near a bump[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1980, 27(12): 1029−1045. doi: 10.1016/0198-0149(80)90063-1
|
[19] |
Brink K H. Tidal and lower frequency currents above Fieberling Guyot[J]. Journal of Geophysical Research: Oceans, 1995, 100(6): 10817−10832.
|
[20] |
Lavelle J W. Flow, hydrography, turbulent mixing, and dissipation at Fieberling Guyot examined with a primitive equation model[J]. Journal of Geophysical Research, 2006, 111(C7): C07014.
|
[21] |
Chapman D C, Haidvogel D B. Generation of internal lee waves trapped over a tall isolated seamount[J]. Geophysical & Astrophysical Fluid Dynamics, 1993, 69(1/4): 33−54.
|
[22] |
Xie Xiaohui, Wang Yan, Liu Xiaohui, et al. Enhanced near-bottom circulation and mixing driven by the surface eddies over abyssal seamounts[J]. Progress in Oceanography, 2022, 208: 102896. doi: 10.1016/j.pocean.2022.102896
|
[23] |
Ma Weidong, Wang Jianing, Wang Fan, et al. The vertical structure and intraseasonal variability of the deep currents in the Southern Philippine Basin[J], Deep Sea Research Part I: Oceanographic Research Papers, 2023, 197: 104043.
|
[24] |
Saenko O A, Merryfield W J. On the effect of topographically enhanced mixing on the global ocean circulation[J]. Journal of Physical Oceanography, 2005, 35(5): 826−834. doi: 10.1175/JPO2722.1
|
[25] |
Stewart A L, Dellar P J. An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force[J]. Journal of Computational Physics, 2016, 313: 99−120. doi: 10.1016/j.jcp.2015.12.042
|
[26] |
Stewart R H. Introduction to Physical Oceanography[M]. Austin: The University of Texas, 2006. (查阅网上资料, 未找到本条文献出版信息, 请确认)
|
[27] |
Sutyrin, G, Herbette S, Carton X. Deformation and splitting of baroclinic eddies encountering a tall seamount[J]. Geophysical & Astrophysical Fluid Dynamics, 2011, 105(4/5): 478−505.
|
[28] |
Herbette S, Morel Y, Arhan M. Erosion of a surface vortex by a seamount on the β plane[J]. Journal of Physical Oceanography, 2005, 35(11): 2012−2030. doi: 10.1175/JPO2809.1
|
[29] |
Fox-Kemper B. Eddies and friction : removal of vorticity from the wind-driven gyre[D]. Cambridge: Massachusetts Institute of Technology, 2003.
|