Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Huang Yangyang,Pan Hao,Xie Xiaohui. Asymmetric of anticyclonic jet at the bottom of deep-sea seamounts[J]. Haiyang Xuebao,2025, 47(6):1–12 doi: 10.12284/hyxb2025053
Citation: Huang Yangyang,Pan Hao,Xie Xiaohui. Asymmetric of anticyclonic jet at the bottom of deep-sea seamounts[J]. Haiyang Xuebao,2025, 47(6):1–12 doi: 10.12284/hyxb2025053

Asymmetric of anticyclonic jet at the bottom of deep-sea seamounts

doi: 10.12284/hyxb2025053
  • Received Date: 2024-10-23
  • Rev Recd Date: 2025-04-08
  • Available Online: 2025-05-22
  • This paper studies the asymmetric characteristics and mechanism of the anticyclonic jet at the bottom of seamounts by using the mooring observation data collected at the Caiwei seamount (CS) in the tropical western Pacific Ocean and an ideal two-layer model. The observation of bottom currents shows that there is an asymmetric anticyclonic jet phenomenon in the east-west direction at the bottom of the seamount. The two-layer model reproduces the bottom flow field and its asymmetric characteristics of the ideal seamount and CS, suggesting that the main source of asymmetry is the vorticity change caused by the energy input of background currents and the geostrophic and topographic β effects. The flow field characteristics are analyzed through the principle of potential vorticity conservation, and the mechanism of vorticity change affecting the bottom jet and its asymmetric characteristics is explained. In addition, this paper also discusses the influence of other environmental parameters on the bottom anticyclonic jet.
  • loading
  • [1]
    Gevorgian J, Sandwell D T, Yu Yao, et al. Global distribution and morphology of small seamounts[J]. Earth and Space Science, 2023, 10(4): e2022EA002331. doi: 10.1029/2022EA002331
    [2]
    Mai Hongtao, Wang Dongxiao, Chen Hui, et al. Mid-deep circulation in the western South China sea and the impacts of the central depression belt and complex topography[J]. Journal of Marine Science and Engineering, 2024, 12(5): 700. doi: 10.3390/jmse12050700
    [3]
    Jiang Xingliang, Dong Changming, Ji Yuxiang, et al. Influences of deep-water seamounts on the hydrodynamic environment in the northwestern pacific ocean[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017396. doi: 10.1029/2021JC017396
    [4]
    Perfect B, Kumar N, Riley J J. Vortex structures in the wake of an idealized seamount in rotating, stratified flow[J]. Geophysical Research Letters, 2018, 45(17): 9098−9105. doi: 10.1029/2018GL078703
    [5]
    Shu Yeqiang, Wang Jinghong, Xue Huijie, et al. Deep-current intraseasonal variability interpreted as topographic rossby waves and deep eddies in the Xisha Islands of the South China Sea[J]. Journal of Physical Oceanography, 2022, 52(7): 1415−1430. doi: 10.1175/JPO-D-21-0147.1
    [6]
    Carter G S, Gregg M C, Merrifield, M A. Flow and mixing around a small seamount on Kaena Ridge, Hawaii[J]. Journal of Physical Oceanography, 2006, 36(6): 1036−1052. doi: 10.1175/JPO2924.1
    [7]
    Nikurashin M, Ferrari R. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean[J]. Geophysical Research Letters, 2011, 38(8): L08610.
    [8]
    Taylor G I. Experiments on the motion of solid bodies in rotating fluids[J]. Proceedings of the Royal Society of London - Series A: Containing Papers of a Mathematical and Physical Character, 1923, 104(725): 213−218.
    [9]
    Lavelle J W, Mohn C. Motion, commotion, and biophysical connections at deep ocean seamounts[J]. Oceanography, 2010, 23(1): 90−103. doi: 10.5670/oceanog.2010.64
    [10]
    White M, Mohn C. Seamounts: A review of physical processes and their influence on the seamount ecosystem (OASIS Report)[R]. Ireland: NUI, Gaiway, 2004.
    [11]
    Chapman D C, Haidvogel D B. Formation of Taylor caps over a tall isolated seamount in a stratified ocean[J]. Geophysical & Astrophysical Fluid Dynamics, 1992, 64(1/4): 31−65.
    [12]
    Haidvogel D B, Beckmann A. Chapman D C, et al. Numerical simulation of flow around a tall isolated seamount. Part II: Resonant generation of trapped waves[J]. Journal of Physical Oceanography, 1993, 23(11): 2373−2391. doi: 10.1175/1520-0485(1993)023<2373:NSOFAA>2.0.CO;2
    [13]
    Xu G, Lavelle J W. Circulation, hydrography, and transport over the summit of axial seamount, a deep volcano in the Northeast Pacific[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5404−5422. doi: 10.1002/2016JC012464
    [14]
    Guo Binbin, Wang Weiqiang, Shu Yeqiang, et al. Observed deep anticyclonic cap over Caiwei Guyot[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2020JC016254. doi: 10.1029/2020JC016254
    [15]
    Beckmann A, Mohn C. The upper ocean circulation at great meteor seamount Part II: retention potential of the seamount induced circulation[J]. Ocean Dynamics, 2002, 52(4): 194−204. doi: 10.1007/s10236-002-0018-3
    [16]
    White M, Bashmachnikov I, Arístegui J, et al. Physical processes and seamount productivity[M]//Pitcher T J, Morato T, Hart P J B, et al. Seamounts: Ecology, fisheries and conservation, Oxford, UK: Wiley Online Library, 2007: 65−84.
    [17]
    Ye Ruijie, Shang Xiaodong, Zhao Wei, et al. Circulation driven by multihump turbulent mixing over a seamount in the South China Sea[J]. Frontiers in Marine Science, 2022, 8: 794156. doi: 10.3389/fmars.2021.794156
    [18]
    Owens W B, Hogg N G. Oceanic observations of stratified Taylor columns near a bump[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1980, 27(12): 1029−1045. doi: 10.1016/0198-0149(80)90063-1
    [19]
    Brink K H. Tidal and lower frequency currents above Fieberling Guyot[J]. Journal of Geophysical Research: Oceans, 1995, 100(6): 10817−10832.
    [20]
    Lavelle J W. Flow, hydrography, turbulent mixing, and dissipation at Fieberling Guyot examined with a primitive equation model[J]. Journal of Geophysical Research, 2006, 111(C7): C07014.
    [21]
    Chapman D C, Haidvogel D B. Generation of internal lee waves trapped over a tall isolated seamount[J]. Geophysical & Astrophysical Fluid Dynamics, 1993, 69(1/4): 33−54.
    [22]
    Xie Xiaohui, Wang Yan, Liu Xiaohui, et al. Enhanced near-bottom circulation and mixing driven by the surface eddies over abyssal seamounts[J]. Progress in Oceanography, 2022, 208: 102896. doi: 10.1016/j.pocean.2022.102896
    [23]
    Ma Weidong, Wang Jianing, Wang Fan, et al. The vertical structure and intraseasonal variability of the deep currents in the Southern Philippine Basin[J], Deep Sea Research Part I: Oceanographic Research Papers, 2023, 197: 104043.
    [24]
    Saenko O A, Merryfield W J. On the effect of topographically enhanced mixing on the global ocean circulation[J]. Journal of Physical Oceanography, 2005, 35(5): 826−834. doi: 10.1175/JPO2722.1
    [25]
    Stewart A L, Dellar P J. An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force[J]. Journal of Computational Physics, 2016, 313: 99−120. doi: 10.1016/j.jcp.2015.12.042
    [26]
    Stewart R H. Introduction to Physical Oceanography[M]. Austin: The University of Texas, 2006. (查阅网上资料, 未找到本条文献出版信息, 请确认)
    [27]
    Sutyrin, G, Herbette S, Carton X. Deformation and splitting of baroclinic eddies encountering a tall seamount[J]. Geophysical & Astrophysical Fluid Dynamics, 2011, 105(4/5): 478−505.
    [28]
    Herbette S, Morel Y, Arhan M. Erosion of a surface vortex by a seamount on the β plane[J]. Journal of Physical Oceanography, 2005, 35(11): 2012−2030. doi: 10.1175/JPO2809.1
    [29]
    Fox-Kemper B. Eddies and friction : removal of vorticity from the wind-driven gyre[D]. Cambridge: Massachusetts Institute of Technology, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (33) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return