Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Liang Mengjiao,Zhou Yi,Zhang Heyue, et al. Numerical simulation of the influence of biofilm on the dynamic geomorphological evolution of tidal flats[J]. Haiyang Xuebao,2024, 46(x):1–14
Citation: Liang Mengjiao,Zhou Yi,Zhang Heyue, et al. Numerical simulation of the influence of biofilm on the dynamic geomorphological evolution of tidal flats[J]. Haiyang Xuebao,2024, 46(x):1–14

Numerical simulation of the influence of biofilm on the dynamic geomorphological evolution of tidal flats

  • Received Date: 2023-01-01
    Available Online: 2024-03-29
  • Tidal flats maintain a complex ecosystem, while its formation is driven by multi-factor interaction, including hydrodynamics, sediment transport, and biological processes. In particular, investigating tidal flat biological processes and elucidating their biological-physical effects are current research hotspots and challenges in the field of marine science. This study focused on intertidal biofilms, constructed a two-dimensional biomorphodynamic model which coupled biofilms with hydrodynamics, sediment transport, and bed level change, to explore the role of biofilms in sediment transport and geomorphological evolution. The biomorphodynamic model was validated using literature data, indicating that the constructed model can simulate the growth pattern and interannual variation of biofilms well. Model results show that tidal creeks with biofilm attachment are more fully extended towards the landward side, showing a branching distribution when hydrodynamics are weak, and biofilms were distributed on both sides of the intertidal zone. Through quantitative analysis of tidal creek morphology, it is found that the presence of biofilms promoted an increase in the number of tidal creek and their development in the vertical direction, while limiting the increase in their width. Compared to tidal flats without the influence of biofilms, the average depth of tidal creeks increases, the total area decreases, the total length increases, the average width decreases, and the overall volume increases. The research outcome of this study deepens the understanding of the role of biofilms on tidal flat evolution and provides a scientific basis for coastal zone protection and ecological restoration projects.
  • loading
  • [1]
    张长宽, 徐孟飘, 周曾, 等. 潮滩剖面形态与泥沙分选研究进展[J]. 水科学进展, 2018, 29(2): 269−282.

    Zhang Changkuan, Xu Mengpiao, Zhou Zeng, et al. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats[J]. Advances in Water Science, 2018, 29(2): 269−282.
    [2]
    周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3): 470−484.

    Zhou Zeng, Chen Lei, Lin Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3): 470−484.
    [3]
    龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291

    Gong Zheng, Chen Xindi, Zhou Zeng, et al. The roles of biological factors in coastal sediment transport: a review[J]. Chinese Science Bulletin, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291
    [4]
    Zhou Zeng, Olabarrieta M, Stefanon L, et al. A comparative study of physical and numerical modeling of tidal network ontogeny[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(4): 892−912. doi: 10.1002/2014JF003092
    [5]
    Xu Fan, Coco G, Zhou Zeng, et al. A numerical study of equilibrium states in tidal network morphodynamics[J]. Ocean Dynamics, 2017, 67(12): 1593−1607. doi: 10.1007/s10236-017-1101-0
    [6]
    Schuerch M, Spencer T, Temmerman S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722): 231−234. doi: 10.1038/s41586-018-0476-5
    [7]
    方红卫, 赵慧明, 何国建, 等. 泥沙颗粒生长生物膜前后表面变化的试验研究[J]. 水利学报, 2011, 42(3): 278−283.

    Fang Hongwei, Zhao Huiming, He Guojian, et al. Experiment of particles' morphology variation after biofilm growth on sediments[J]. Journal of Hydraulic Engineering, 2011, 42(3): 278−283.
    [8]
    Chen Xindi, Zhang C K, Paterson D M, et al. Hindered erosion: the biological mediation of noncohesive sediment behavior[J]. Water Resources Research, 2017, 53(6): 4787−4801. doi: 10.1002/2016WR020105
    [9]
    Andersen T J, Lund-Hansen L C, Pejrup M, et al. Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition[J]. Journal of Marine Systems, 2005, 55(3/4): 123−138.
    [10]
    de Deckere E M G T, Tolhurst T J, de Brouwer J F C. Destabilization of cohesive intertidal sediments by infauna[J]. Estuarine, Coastal and Shelf Science, 2001, 53(5): 665−669. doi: 10.1006/ecss.2001.0811
    [11]
    Droppo I G. Biofilm structure and bed stability of five contrasting freshwater sediments[J]. Marine and Freshwater Research, 2009, 60(7): 690−699. doi: 10.1071/MF08019
    [12]
    Gerbersdorf S U, Jancke T, Westrich B, et al. Microbial stabilization of riverine sediments by extracellular polymeric substances[J]. Geobiology, 2008, 6(1): 57−69. doi: 10.1111/j.1472-4669.2007.00120.x
    [13]
    Tolhurst T J, Gust G, Paterson D M. The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability[J]. Proceedings in Marine Science, 2002, 5: 409−425.
    [14]
    Chen Xindi, Zhang C K, Zhou Z, et al. Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(12): 3113−3125. doi: 10.1002/2017JG004050
    [15]
    Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency[J]. Coastal Engineering, 1996, 29(1/2): 47−78.
    [16]
    Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth. Part 2. Spectral evolution[J]. Coastal Engineering, 1996, 29(1/2): 79−99.
    [17]
    Tao Jianfeng, Wang Zhengbing, Zhou Zeng, et al. A morphodynamic modeling study on the formation of the large‐scale radial sand ridges in the Southern Yellow Sea[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(7): 1742−1761. doi: 10.1029/2018JF004866
    [18]
    Roberts W, Le Hir P, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10/11): 1079−1097.
    [19]
    Green M O, Coco G. Review of wave-driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 2014, 52(1): 77−117. doi: 10.1002/2013RG000437
    [20]
    Soulsby R L. Dynamics of marine sands: a manual for practical applications[J]. Oceanographic Literature Review, 1997, 44(9): 947.
    [21]
    Partheniades E. Erosion and deposition of cohesive soils[J]. Journal of the Hydraulics Division, 1965, 91(1): 105−139. doi: 10.1061/JYCEAJ.0001165
    [22]
    Winterwerp J C. On the sedimentation rate of cohesive sediment[J]. Proceedings in Marine Science, 2007, 8: 209−226.
    [23]
    Engelund F, Hansen E. A monograph on sediment transport in alluvial streams[R]. Denmark: Tekniskforlag Skelbrekgade 4 Copenhagen V, 1967.
    [24]
    Bagnold R A. An approach to the sediment transport problem from general physics[R]. USGS Numbered Series, 1966. (查阅网上资料, 未找到对应的出版地信息, 请确认)

    Bagnold R A. An approach to the sediment transport problem from general physics[R]. USGS Numbered Series, 1966. (查阅网上资料, 未找到对应的出版地信息, 请确认)
    [25]
    van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993: I11.
    [26]
    Roelvink J A. Coastal morphodynamic evolution techniques[J]. Coastal Engineering, 2006, 53(2/3): 277−287.
    [27]
    徐孟飘, 东培华, 马骏, 等. 大小潮作用对潮滩沉积物层理影响的数值模拟研究[J]. 海洋学报, 2021, 43(10): 70−80.

    Xu Mengpiao, Dong Peihua, Ma Jun, et al. The effects of spring-neap tide on sediment bedding on tidal flats: a numerical study[J]. Haiyang Xuebao, 2021, 43(10): 70−80.
    [28]
    van der Wal D, Wielemaker-van den Dool A, Herman P M J. Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems[J]. Ecosystems, 2010, 13(2): 338−351. doi: 10.1007/s10021-010-9322-9
    [29]
    Mariotti G, Fagherazzi S. Modeling the effect of tides and waves on benthic biofilms[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G04010.
    [30]
    Nguyen H M, Bryan K R, Pilditch C A, et al. Influence of ambient temperature on erosion properties of exposed cohesive sediment from an intertidal mudflat[J]. Geo-Marine Letters, 2019, 39(4): 337−347. doi: 10.1007/s00367-019-00579-x
    [31]
    Fagherazzi S, Fitzgerald D M, Fulweiler R W, et al. Ecogeomorphology of tidal flats[J]. Treatise on Geomorphology, 2013, 12: 201−220.
    [32]
    Riethmüller R, Heineke M, Kühl H, et al. Chlorophyll a concentration as an index of sediment surface stabilisation by microphytobenthos?[J]. Continental Shelf Research, 2000, 20(10/11): 1351−1372.
    [33]
    Le Hir P, Monbet Y, Orvain F. Sediment erodability in sediment transport modelling: can we account for biota effects?[J]. Continental Shelf Research, 2007, 27(8): 1116−1142. doi: 10.1016/j.csr.2005.11.016
    [34]
    Uehlinger U, Bührer H, Reichert P. Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modelling[J]. Freshwater Biology, 1996, 36(2): 249−263. doi: 10.1046/j.1365-2427.1996.00082.x
    [35]
    Labiod C, Godillot R, Caussade B. The relationship between stream periphyton dynamics and near-bed turbulence in rough open-channel flow[J]. Ecological Modelling, 2007, 209(2/4): 78−96.
    [36]
    Boulêtreau S, Izagirre O, Garabétian F, et al. Identification of a minimal adequate model to describe the biomass dynamics of river epilithon[J]. River Research and Applications, 2008, 24(1): 36−53. doi: 10.1002/rra.1046
    [37]
    Lawson S E, Wiberg P L, McGlathery K J, et al. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon[J]. Estuaries and Coasts, 2007, 30(1): 102−112. doi: 10.1007/BF02782971
    [38]
    Whitehouse R, Soulsby R, Roberts W, et al. Dynamics of Estuarine Muds: A Manual for Practical Applications[M]. London: T. Telford, 2000.
    [39]
    Mariotti G, Fagherazzi S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F1): F01004.
    [40]
    Zhu Q, van Prooijen B C, Maan D C, et al. The heterogeneity of mudflat erodibility[J]. Geomorphology, 2019, 345: 106834. doi: 10.1016/j.geomorph.2019.106834
    [41]
    Guarini J M, Blanchard G F, Bacher C, et al. Dynamics of spatial patterns of microphytobenthic biomass: Inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France)[J]. Marine Ecology Progress Series, 1998, 166: 131−141. doi: 10.3354/meps166131
    [42]
    Andersen T J. Seasonal variation in erodibility of two temperate, microtidal mudflats[J]. Estuarine, Coastal and Shelf Science, 2001, 53(1): 1−12. doi: 10.1006/ecss.2001.0790
    [43]
    Chen Xindi, Zhang Changkuan, Paterson D M, et al. The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms: the role of 'biofilm precursors'[J]. Earth Surface Processes and Landforms, 2019, 44(7): 1471−1481. doi: 10.1002/esp.4573
    [44]
    Fan Daidu. Open-coast tidal flats[M]//Davis Jr R A, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 187-229.
    [45]
    Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
    [46]
    Zhou Zeng, Liang Mengjiao, Chen Lei, et al. Processes, feedbacks, and morphodynamic evolution of tidal flat–marsh systems: progress and challenges[J]. Water Science and Engineering, 2022, 15(2): 89−102. doi: 10.1016/j.wse.2021.07.002
    [47]
    Blanchard G F, Guarini J M, Gros P, et al. Seasonal effect on the relationship between the photosynthetic capacity of intertidal microphytobenthos and temperature[J]. Journal of Phycology, 1997, 33(5): 723−728. doi: 10.1111/j.0022-3646.1997.00723.x
    [48]
    Macintyre H L, Geider R J, Miller D C. Microphytobenthos: the ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production[J]. Estuaries, 1996, 19(2): 186−201. doi: 10.2307/1352224
    [49]
    Gerbersdorf S U, Wieprecht S. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture[J]. Geobiology, 2015, 13(1): 68−97. doi: 10.1111/gbi.12115
    [50]
    Widdows J, Blauw A, Heip C H R, et al. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands[J]. Marine Ecology Progress Series, 2004, 274: 41−56. doi: 10.3354/meps274041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (61) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return