Citation: | Li Zhongwei,Zeng Wei,Li Yong, et al. A Feature Fusion Model for Mesoscale Eddy Identification Based on Multi-Source Data[J]. Haiyang Xuebao,2025, 47(x):1–12 |
[1] |
Dong Changming, Liu Lingxiao, Nencioli F, et al. The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset[J]. Scientific Data, 2022, 9(1): 436. doi: 10.1038/s41597-022-01550-9
|
[2] |
Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
|
[3] |
Zhang Zhengguang, Wang Wei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322−324. doi: 10.1126/science.1252418
|
[4] |
Zimin A V, Atadzhanova O A. Estimation of the characteristics of mesoscale eddies in the basin of the Lofoten depression from satellite and ship observations[J]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 2020, 17(3): 202−210. doi: 10.21046/2070-7401-2020-17-3-202-210
|
[5] |
Xie Huarong, Xu Qing, Dong Changming. Deep learning for mesoscale eddy detection with feature fusion of multisatellite observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 18351−18364. doi: 10.1109/JSTARS.2024.3468457
|
[6] |
Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3): 445−454. doi: 10.1016/0011-7471(70)90059-8
|
[7] |
Weiss J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics[J]. Physica D: Nonlinear Phenomena, 1991, 48(2/3): 273−294.
|
[8] |
Sadarjoen I A, Post F H. Detection, quantification, and tracking of vortices using streamline geometry[J]. Computers & Graphics, 2000, 24(3): 333−341.
|
[9] |
Nencioli F, Dong Changming, Dickey T, et al. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564−579. doi: 10.1175/2009JTECHO725.1
|
[10] |
Xing Tao, Yang Yikai. Three mesoscale eddy detection and tracking methods: assessment for the South China Sea[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38(2): 243−258. doi: 10.1175/JTECH-D-20-0020.1
|
[11] |
张家灏, 邓科峰, 聂腾飞, 等. 基于机器学习的海洋中尺度涡检测识别研究综述[J]. 计算机工程与科学, 2021, 43(12): 2115−2125. doi: 10.3969/j.issn.1007-130X.2021.12.004
Zhang Jiahao, Deng Kefeng, Nie Tengfei, et al. Overview on ocean mesoscale eddy detection and identification based on machine learning[J]. Computer Engineering and Science, 2021, 43(12): 2115−2125. doi: 10.3969/j.issn.1007-130X.2021.12.004
|
[12] |
徐广珺, 施宇诚, 余洋, 等. 海洋涡旋智能检测研究进展[J]. 海洋学研究, 2024, 42(3): 38−50. doi: 10.3969/j.issn.1001-909X.2024.03.003
Xu Guangjun, Shi Yucheng, Yu Yang, et al. Recent developments in AI-based oceanic eddy identification[J]. Journal of Marine Sciences, 2024, 42(3): 38−50. doi: 10.3969/j.issn.1001-909X.2024.03.003
|
[13] |
Xu Guangjun, Cheng Cheng, Yang Wenxian, et al. Oceanic eddy identification using an AI scheme[J]. Remote Sensing, 2019, 11(11): 1349. doi: 10.3390/rs11111349
|
[14] |
Lguensat R, Sun Miao, Fablet R, et al. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 1764−1767.
|
[15] |
Pegliasco C, Delepoulle A, Mason E, et al. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry[J]. Earth System Science Data, 2022, 14(3): 1087−1107. doi: 10.5194/essd-14-1087-2022
|
[16] |
Sun Xin, Zhang Meng, Dong Junyu, et al. A deep framework for eddy detection and tracking from satellite sea surface height data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7224−7234. doi: 10.1109/TGRS.2020.3032523
|
[17] |
董子意. 基于深度学习的海洋中尺度涡自动检测模型[D]. 杭州: 浙江大学, 2021.
Dong Z Y. An automatic marine mesoscale eddy detection model based on deep learning[D]. Hangzhou: Zhejiang University, 2021.
|
[18] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234−241.
|
[19] |
Santana O J, Hernández-Sosa D, Smith R N. Oceanic mesoscale eddy detection and convolutional neural network complexity[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102973. doi: 10.1016/j.jag.2022.102973
|
[20] |
Xu Guangjun, Xie Guangjun, Dong Changming, et al. Application of three deep learning schemes into oceanic eddy detection[J]. Frontiers in Marine Science, 2021, 8: 672334. doi: 10.3389/fmars.2021.672334
|
[21] |
Moschos E, Kugusheva A, Coste P, et al. Computer vision for ocean eddy detection in infrared imagery[C]//Proceedings of 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, USA: IEEE, 2023: 6384−6393.
|
[22] |
Liu Yingjie, Zheng Quanan, Li Xiaofeng. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094772. doi: 10.1029/2021GL094772
|
[23] |
Xie Huarong, Xu Qing, Dong Changming. Deep learning for mesoscale eddy detection with feature fusion of multisatellite observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 18351−18364. (查阅网上资料, 本条文献和第5条文献重复, 请核对)
|
[24] |
李忠伟, 刘格格, 李永, 等. 基于多模态数据融合的改进中尺度涡检测模型[J]. 海洋预报, 2024, 41(2): 53−62, doi: 10.11737/j.issn.1003-0239.2024.02.006
Li Zhongwei, Liu Gege, Li Yong, et al. An improved mesoscale eddy detection model based on multimodal data fusion[J]. Marine Forecasts, 2024, 41(2): 53−62, doi: 10.11737/j.issn.1003-0239.2024.02.006
|
[25] |
Huo Jidong, Zhang Jie, Yang Jungang, et al. High kinetic energy mesoscale eddy identification based on multi-task learning and multi-source data[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 128: 103714. doi: 10.1016/j.jag.2024.103714
|
[26] |
王丽娜, 孙阳, 张红春, 等. 基于注意力的多尺度残差U-Net的海洋中尺度涡检测[J]. 海洋与湖沼, 2025, 56(1): 64−76.
Wang Lina, Sun Yang, Zhang Hongdong, et al. A multi-scale attention residual-based U-Net model for detection of ocean mesoscale eddies[J]. Oceanologia et Limnologia Sinica, 2025, 56(1): 64−76.
|
[27] |
Xing Jin, Wang Feng, Yang Dongkai, et al. Detection and estimation of daily oceanic mesoscale eddies from spaceborne global navigation satellite system-reflectometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5800816.
|
[28] |
Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 Fourth International Conference on 3D Vision. Stanford, CA, USA: IEEE, 2016: 565−571.
|
[29] |
Lin Xiayan, Zhao Hui, Liu Yu, et al. Ocean eddies in the Drake Passage: decoding their three-dimensional structure and evolution[J]. Remote Sensing, 2023, 15(9): 2462. doi: 10.3390/rs15092462
|
[30] |
Liu Chang, Lin Xiayan, Xu Guangjun, et al. Improved identification and tracking of three-dimensional eddies in the Southern Ocean utilizing 3D-U-Res-Net[J]. Frontiers in Marine Science, 2024, 11: 1482804. doi: 10.3389/fmars.2024.1482804
|
[31] |
丁雅楠, 石绥祥, 刘克修, 等. 基于高分辨率再分析海流数据的三种涡旋识别方法在南海的评估[J]. 海洋通报, 2024, 43(3): 301−311.
Ding Yanan, Shi Suixiang, Liu Kexiu, et al. Assessment of three eddy detection methods based on high-resolution reanalysis of ocean current data in the South China Sea[J]. Marine Science Bulletin, 2024, 43(3): 301−311.
|
[32] |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018: 3−19.
|