Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 7
Nov.  2020
Turn off MathJax
Article Contents
Ge Zhenmin,Yan Quanshu,Zhao Renjie, et al. Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge[J]. Haiyang Xuebao,2020, 42(7):93–107 doi: 10.3969/j.issn.0253-4193.2020.07.008
Citation: Ge Zhenmin,Yan Quanshu,Zhao Renjie, et al. Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge[J]. Haiyang Xuebao,2020, 42(7):93–107 doi: 10.3969/j.issn.0253-4193.2020.07.008

Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge

doi: 10.3969/j.issn.0253-4193.2020.07.008
  • Received Date: 2019-07-25
  • Rev Recd Date: 2019-10-14
  • Available Online: 2020-11-18
  • Publish Date: 2020-07-25
  • During the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 344, tholeiitic basalt basement samples of the Cocos Ridge offshore central America were drilled in holes U1381A and U1381C at Site U1381. Studying on these samples will provide some important clues for understanding their petrogenesis. In this study we carried out in-situ major and trace elements analysis for plagioclase phenocrysts and microlites hosted by these basalt samples. The results show that plagioclases are bytownite, labradorite, with a small number of andesine. Some of the plagioclase phenocrysts show positive compositional zoning, while others only have weak compositional changes from the core to the rim of the phenocrysts. The trace element compositions of plagioclase phenocrysts and microlites are quite different. The plagioclase phenocrysts are enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements, and have obvious positive Eu anomalies. The contents of most incompatible elements of microlites are higher than those of phenocrysts. We used the classical igneous plagioclase thermometer to calculate the crystallization temperature of plagioclase phenocrysts and microlites as follows, i.e., 1 050−1 253℃ for plagioclase phenocrysts, and 866−1 033℃ for plagioclase microlites. Finally, we suggest that the core of plagioclase phenocrysts is crystallized from earlier relatively primitive magma, while the rim of the phenocrysts and microlites are crystallization products of continuous evolved magma compositions. The corrosion structure and positive compositional zoning of plagioclase phenocrysts may be mainly caused by some processes such as upwelling decompression and magma recharging. We suggest that the Cocos Ridge basaltic magma was originated from a magma chamber with continuous injection and convection of primitive magma.
  • loading
  • [1]
    Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42−43. doi: 10.1038/230042a0
    [2]
    Gazel E, Carr M J, Hoernle K, et al. Galapagos‐OIB signature in southern Central America: mantle refertilization by arc-hot spot interaction[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02S11.
    [3]
    Harris R N, Sakaguchi A, Petronotis K, et al. Expedition 344 summary[R/OL]. (2013-12-11)[2019-03-25]. http://publications.iodp.org/proceedings/344/101/101_.htm.
    [4]
    Expedition 334 Scientists. Site U1381[R/OL]. (2012-4-12)[2019-03-25]. http://publications.iodp.org/proceedings/334/106/106_.htm.
    [5]
    Harris R N, Sakaguchi A, Petronotis K, et al. Input Site U1381[R/OL]. (2013-12-11) [2019-03-25]. http://publication s.iodp.org/proceedings/344/103/103_.htm.
    [6]
    Werner R, Hoernle K, Barckhausen U, et al. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m. y.: constraints from morphology, geochemistry, and magnetic anomalies[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 1108.
    [7]
    Harpp K S, Wanless V D, Otto R H, et al. The Cocos and carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction[J]. Journal of Petrology, 2005, 46(1): 109−133. doi: 10.1093/petrology/egh064
    [8]
    鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107−123.

    Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Haiyang Xuebao, 2014, 36(5): 107−123.
    [9]
    Ranero C R, von Huene R. Subduction erosion along the Middle America convergent margin[J]. Nature, 2000, 404(6779): 748−752. doi: 10.1038/35008046
    [10]
    Hey R. Tectonic evolution of the Cocos-Nazca spreading center[J]. GSA Bulletin, 1977, 88(12): 1404−1420.
    [11]
    Werner R, Hoernle K, van den Bogaard P, et al. Drowned 14-m. y. -old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models[J]. Geology, 1999, 27(6): 499−502. doi: 10.1130/0091-7613(1999)027<0499:DMYOGP>2.3.CO;2
    [12]
    Barckhausen U, Ranero C R, von Huene R, et al. Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B9): 19207−19220. doi: 10.1029/2001JB000238
    [13]
    Walther C H E. The crustal structure of the Cocos Ridge off Costa Rica[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B3): 2136.
    [14]
    Brandstätter J, Kurz W, Richoz S, et al. The origin of carbonate veins within the sedimentary cover and igneous rocks of the Cocos Ridge: results from IODP Hole U1414A[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(10): 3721−3738. doi: 10.1029/2018GC007729
    [15]
    李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728−736. doi: 10.11867/j.issn.1001-8166.2013.06.0728

    Li Yongxiang, Yan Quanshu, Zhao Xixi, et al. Research on seismogenesis at erosive convergent margins: report from IODP expedition 344[J]. Advances in Earth Science, 2013, 28(6): 728−736. doi: 10.11867/j.issn.1001-8166.2013.06.0728
    [16]
    van Andel T H, Heath G R, Bennett R H, et al. Site 158[R/OL]. [2019-03-25]. http://deepseadrilling.org/16/volume/dsdp16_05.pdf.
    [17]
    Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones[J]. Contributions to Mineralogy and Petrology, 1999, 135(4): 355−372. doi: 10.1007/s004100050517
    [18]
    Viccaro M, Giacomoni P P, Ferlito C, et al. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts[J]. Lithos, 2010, 116(1/2): 77−91.
    [19]
    罗照华, 杨宗锋, 代耕, 等. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1): 176−181. doi: 10.3969/j.issn.1000-3657.2013.01.012

    Luo Zhaohua, Yang Zongfeng, Dai Geng, et al. Crystal populations of igneous rocks and their implications in genetic mineralogy[J]. Geology in China, 2013, 40(1): 176−181. doi: 10.3969/j.issn.1000-3657.2013.01.012
    [20]
    Streck M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 595−622. doi: 10.2138/rmg.2008.69.15
    [21]
    Jerram D A, Martin V M. Understanding crystal populations and their significance through the magma plumbing system[J]. Geological Society, London, Special Publications, 2008, 304: 133−148. doi: 10.1144/SP304.7
    [22]
    徐夕生, 邱检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010: 104−122.

    Xu Xisheng, Qiu Jiansheng. Igneous Petrology[M]. Beijing: Science Press, 2010: 104−122.
    [23]
    Morse S A. Cation diffusion in plagioclase feldspar[J]. Science, 1984, 225(4661): 504−505. doi: 10.1126/science.225.4661.504
    [24]
    杨帆, 黄小龙, 李洁. 华南长城岭晚白垩世斜斑玄武岩的岩浆作用过程与岩石成因制约[J]. 岩石学报, 2018, 34(1): 157−171.

    Yang Fan, Huang Xiaolong, Li Jie. Magma processes and petrogenesis of the Late Cretaceous plagioclase-phyric basalt in the Changchengling area, South China[J]. Acta Petrologica Sinica, 2018, 34(1): 157−171.
    [25]
    张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(2): 234−248. doi: 10.3969/j.issn.1671-6647.2017.02.008

    Zhang Pingyang, Yan Quanshu. Compositions of plagioclase hosted by basaltic rocks from the Mariana Trough and their petrogenesis significances[J]. Advances in Marine Science, 2017, 35(2): 234−248. doi: 10.3969/j.issn.1671-6647.2017.02.008
    [26]
    Yang Fan, Huang Xiaolong, Xu Yigang, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges: evidence from plagioclase in mid-ocean ridge basalts from the South China Sea[J]. Journal of Petrology, 2019, 60(6): 1135−1162. doi: 10.1093/petrology/egz027
    [27]
    Costa F, Coogan L A, Chakraborty S. The time scales of magma mixing and mingling involving primitive melts and melt-mush interaction at mid-ocean ridges[J]. Contributions to Mineralogy and Petrology, 2010, 159(3): 371−387. doi: 10.1007/s00410-009-0432-3
    [28]
    Yan Q S, Shi X F. Data report: major and trace element and Sr-Nd-Pb isotope analyses for basement rocks from the CRISP-A transect drilled during Expeditions 334 and 344[R/OL]. (2016-02-19) [2019-03-25]. http://publications.iodp.org/proceedings/344/205/205_.htm.
    [29]
    Maury R C, Bougault H, Joron J L, et al. Volcanic rocks from Leg 67 sites: mineralogy and geochemistry[R/OL]. [2019-03-25]. http://deepseadrilling.org/67/volume/dsdp67_23.pdf.
    [30]
    鄢全树, 石学法, 刘季花, 等. 南海新生代碱性玄武岩中斜长石矿物的化学成分及意义[J]. 矿物学报, 2008, 28(2): 135−142. doi: 10.3321/j.issn:1000-4734.2008.02.005

    Yan Quanshu, Shi Xuefa, Liu Jihua, et al. Chemical composition of plagioclase in Cenozoic Alkali basalt from the South China Sea[J]. Acta Mineralogica Sinica, 2008, 28(2): 135−142. doi: 10.3321/j.issn:1000-4734.2008.02.005
    [31]
    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223−253.
    [32]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
    [33]
    Norman M, Garcia M O, Pietruszka A J. Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawai’i, and petrogenesis of differentiated rift-zone lavas[J]. American Mineralogist, 2005, 90(5/6): 888−899.
    [34]
    Putirka K D. Igneous thermometers and barometers based on plagioclase+liquid equilibria: tests of some existing models and new calibrations[J]. American Mineralogist, 2005, 90(2/3): 336−346.
    [35]
    Kudo A M, Weill D F. An igneous plagioclase thermometer[J]. Contributions to Mineralogy and Petrology, 1970, 25(1): 52−65. doi: 10.1007/BF00383062
    [36]
    Mathez E A. Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks[J]. Contributions to Mineralogy and Petrology, 1973, 41(1): 61−72. doi: 10.1007/BF00377654
    [37]
    Kuo L C, Kirkpatrick R J. Pre-eruption history of phyric basalts from DSDP Legs 45 and 46: evidence from morphology and zoning patterns in plagioclase[J]. Contributions to Mineralogy and Petrology, 1982, 79(1): 13−27. doi: 10.1007/BF00376957
    [38]
    Takagi D, Sato H, Nakagawa M. Experimental study of a low-alkali tholeiite at 1-5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite[J]. Contributions to Mineralogy and Petrology, 2005, 149(5): 527−540. doi: 10.1007/s00410-005-0666-7
    [39]
    李敏. EPR和SWIR玄武岩岩石地球化学特征对比及其对岩浆过程的指示意义[D]. 青岛: 中国海洋大学, 2014.

    Li Min. Petrogeochemical characteristics comparison and implications for magmatic processes of the MORBs between EPR and SWIR[D]. Qingdao: Ocean University of China, 2014.
    [40]
    陈博, 朱永峰. 新疆百口泉闪长岩中高An值斜长石的成因及岩石学意义[J]. 岩石学报, 2015, 31(2): 479−490.

    Chen Bo, Zhu Yongfeng. The origin of high-An plagioclase in diorite from Baikouquan, Xinjiang and its petrogenetic significance[J]. Acta Petrologica Sinica, 2015, 31(2): 479−490.
    [41]
    Bindeman I N, Davis A M, Drake M J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements[J]. Geochimica et Cosmochimica Acta, 1998, 62(7): 1175−1193. doi: 10.1016/S0016-7037(98)00047-7
    [42]
    Ginibre C, Wörner G, Kronz A. Minor-and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 143(3): 300−315. doi: 10.1007/s00410-002-0351-z
    [43]
    Nelson S T, Montana A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression[J]. American Mineralogist, 1992, 77(11/12): 1242−1249.
    [44]
    Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497: 146−161. doi: 10.1016/j.chemgeo.2018.09.002
    [45]
    李原鸿, 黄方, 于慧敏, 等. 加勒比海小安德列斯岛弧Kick’em Jenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化[J]. 岩石学报, 2016, 32(2): 605−616.

    Li Yuanhong, Huang Fang, Yu Huimin, et al. Plagioclase zoning in submarine volcano Kick’em Jenny, Lesser Antilles Arc: insights into magma evolution processes in oceanic arc magma chamber[J]. Acta Petrologica Sinica, 2016, 32(2): 605−616.
    [46]
    Blundy J, Cashman K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631−650. doi: 10.1007/s004100000219
    [47]
    李俊录, 崔建军, 张维. 东太平洋海隆1°N洋中脊玄武岩斜长石斑晶的化学特征及其对岩浆作用的指示意义[J]. 地质与勘探, 2019, 55(2): 562−569.

    Li Junlu, Cui Jianjun, Zhang Wei. Chemical characteristics of plagioclase phenocrysts in MORBs from the East Pacific Rise 1°N and implication for magmatic processes[J]. Geology and Exploration, 2019, 55(2): 562−569.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views (329) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return