Citation: | Ge Zhenmin,Yan Quanshu,Zhao Renjie, et al. Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge[J]. Haiyang Xuebao,2020, 42(7):93–107 doi: 10.3969/j.issn.0253-4193.2020.07.008 |
[1] |
Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42−43. doi: 10.1038/230042a0
|
[2] |
Gazel E, Carr M J, Hoernle K, et al. Galapagos‐OIB signature in southern Central America: mantle refertilization by arc-hot spot interaction[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02S11.
|
[3] |
Harris R N, Sakaguchi A, Petronotis K, et al. Expedition 344 summary[R/OL]. (2013-12-11)[2019-03-25]. http://publications.iodp.org/proceedings/344/101/101_.htm.
|
[4] |
Expedition 334 Scientists. Site U1381[R/OL]. (2012-4-12)[2019-03-25]. http://publications.iodp.org/proceedings/334/106/106_.htm.
|
[5] |
Harris R N, Sakaguchi A, Petronotis K, et al. Input Site U1381[R/OL]. (2013-12-11) [2019-03-25]. http://publication s.iodp.org/proceedings/344/103/103_.htm.
|
[6] |
Werner R, Hoernle K, Barckhausen U, et al. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m. y.: constraints from morphology, geochemistry, and magnetic anomalies[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 1108.
|
[7] |
Harpp K S, Wanless V D, Otto R H, et al. The Cocos and carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction[J]. Journal of Petrology, 2005, 46(1): 109−133. doi: 10.1093/petrology/egh064
|
[8] |
鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107−123.
Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Haiyang Xuebao, 2014, 36(5): 107−123.
|
[9] |
Ranero C R, von Huene R. Subduction erosion along the Middle America convergent margin[J]. Nature, 2000, 404(6779): 748−752. doi: 10.1038/35008046
|
[10] |
Hey R. Tectonic evolution of the Cocos-Nazca spreading center[J]. GSA Bulletin, 1977, 88(12): 1404−1420.
|
[11] |
Werner R, Hoernle K, van den Bogaard P, et al. Drowned 14-m. y. -old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models[J]. Geology, 1999, 27(6): 499−502. doi: 10.1130/0091-7613(1999)027<0499:DMYOGP>2.3.CO;2
|
[12] |
Barckhausen U, Ranero C R, von Huene R, et al. Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B9): 19207−19220. doi: 10.1029/2001JB000238
|
[13] |
Walther C H E. The crustal structure of the Cocos Ridge off Costa Rica[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B3): 2136.
|
[14] |
Brandstätter J, Kurz W, Richoz S, et al. The origin of carbonate veins within the sedimentary cover and igneous rocks of the Cocos Ridge: results from IODP Hole U1414A[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(10): 3721−3738. doi: 10.1029/2018GC007729
|
[15] |
李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728−736. doi: 10.11867/j.issn.1001-8166.2013.06.0728
Li Yongxiang, Yan Quanshu, Zhao Xixi, et al. Research on seismogenesis at erosive convergent margins: report from IODP expedition 344[J]. Advances in Earth Science, 2013, 28(6): 728−736. doi: 10.11867/j.issn.1001-8166.2013.06.0728
|
[16] |
van Andel T H, Heath G R, Bennett R H, et al. Site 158[R/OL]. [2019-03-25]. http://deepseadrilling.org/16/volume/dsdp16_05.pdf.
|
[17] |
Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones[J]. Contributions to Mineralogy and Petrology, 1999, 135(4): 355−372. doi: 10.1007/s004100050517
|
[18] |
Viccaro M, Giacomoni P P, Ferlito C, et al. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts[J]. Lithos, 2010, 116(1/2): 77−91.
|
[19] |
罗照华, 杨宗锋, 代耕, 等. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1): 176−181. doi: 10.3969/j.issn.1000-3657.2013.01.012
Luo Zhaohua, Yang Zongfeng, Dai Geng, et al. Crystal populations of igneous rocks and their implications in genetic mineralogy[J]. Geology in China, 2013, 40(1): 176−181. doi: 10.3969/j.issn.1000-3657.2013.01.012
|
[20] |
Streck M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 595−622. doi: 10.2138/rmg.2008.69.15
|
[21] |
Jerram D A, Martin V M. Understanding crystal populations and their significance through the magma plumbing system[J]. Geological Society, London, Special Publications, 2008, 304: 133−148. doi: 10.1144/SP304.7
|
[22] |
徐夕生, 邱检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010: 104−122.
Xu Xisheng, Qiu Jiansheng. Igneous Petrology[M]. Beijing: Science Press, 2010: 104−122.
|
[23] |
Morse S A. Cation diffusion in plagioclase feldspar[J]. Science, 1984, 225(4661): 504−505. doi: 10.1126/science.225.4661.504
|
[24] |
杨帆, 黄小龙, 李洁. 华南长城岭晚白垩世斜斑玄武岩的岩浆作用过程与岩石成因制约[J]. 岩石学报, 2018, 34(1): 157−171.
Yang Fan, Huang Xiaolong, Li Jie. Magma processes and petrogenesis of the Late Cretaceous plagioclase-phyric basalt in the Changchengling area, South China[J]. Acta Petrologica Sinica, 2018, 34(1): 157−171.
|
[25] |
张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(2): 234−248. doi: 10.3969/j.issn.1671-6647.2017.02.008
Zhang Pingyang, Yan Quanshu. Compositions of plagioclase hosted by basaltic rocks from the Mariana Trough and their petrogenesis significances[J]. Advances in Marine Science, 2017, 35(2): 234−248. doi: 10.3969/j.issn.1671-6647.2017.02.008
|
[26] |
Yang Fan, Huang Xiaolong, Xu Yigang, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges: evidence from plagioclase in mid-ocean ridge basalts from the South China Sea[J]. Journal of Petrology, 2019, 60(6): 1135−1162. doi: 10.1093/petrology/egz027
|
[27] |
Costa F, Coogan L A, Chakraborty S. The time scales of magma mixing and mingling involving primitive melts and melt-mush interaction at mid-ocean ridges[J]. Contributions to Mineralogy and Petrology, 2010, 159(3): 371−387. doi: 10.1007/s00410-009-0432-3
|
[28] |
Yan Q S, Shi X F. Data report: major and trace element and Sr-Nd-Pb isotope analyses for basement rocks from the CRISP-A transect drilled during Expeditions 334 and 344[R/OL]. (2016-02-19) [2019-03-25]. http://publications.iodp.org/proceedings/344/205/205_.htm.
|
[29] |
Maury R C, Bougault H, Joron J L, et al. Volcanic rocks from Leg 67 sites: mineralogy and geochemistry[R/OL]. [2019-03-25]. http://deepseadrilling.org/67/volume/dsdp67_23.pdf.
|
[30] |
鄢全树, 石学法, 刘季花, 等. 南海新生代碱性玄武岩中斜长石矿物的化学成分及意义[J]. 矿物学报, 2008, 28(2): 135−142. doi: 10.3321/j.issn:1000-4734.2008.02.005
Yan Quanshu, Shi Xuefa, Liu Jihua, et al. Chemical composition of plagioclase in Cenozoic Alkali basalt from the South China Sea[J]. Acta Mineralogica Sinica, 2008, 28(2): 135−142. doi: 10.3321/j.issn:1000-4734.2008.02.005
|
[31] |
McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223−253.
|
[32] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[33] |
Norman M, Garcia M O, Pietruszka A J. Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawai’i, and petrogenesis of differentiated rift-zone lavas[J]. American Mineralogist, 2005, 90(5/6): 888−899.
|
[34] |
Putirka K D. Igneous thermometers and barometers based on plagioclase+liquid equilibria: tests of some existing models and new calibrations[J]. American Mineralogist, 2005, 90(2/3): 336−346.
|
[35] |
Kudo A M, Weill D F. An igneous plagioclase thermometer[J]. Contributions to Mineralogy and Petrology, 1970, 25(1): 52−65. doi: 10.1007/BF00383062
|
[36] |
Mathez E A. Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks[J]. Contributions to Mineralogy and Petrology, 1973, 41(1): 61−72. doi: 10.1007/BF00377654
|
[37] |
Kuo L C, Kirkpatrick R J. Pre-eruption history of phyric basalts from DSDP Legs 45 and 46: evidence from morphology and zoning patterns in plagioclase[J]. Contributions to Mineralogy and Petrology, 1982, 79(1): 13−27. doi: 10.1007/BF00376957
|
[38] |
Takagi D, Sato H, Nakagawa M. Experimental study of a low-alkali tholeiite at 1-5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite[J]. Contributions to Mineralogy and Petrology, 2005, 149(5): 527−540. doi: 10.1007/s00410-005-0666-7
|
[39] |
李敏. EPR和SWIR玄武岩岩石地球化学特征对比及其对岩浆过程的指示意义[D]. 青岛: 中国海洋大学, 2014.
Li Min. Petrogeochemical characteristics comparison and implications for magmatic processes of the MORBs between EPR and SWIR[D]. Qingdao: Ocean University of China, 2014.
|
[40] |
陈博, 朱永峰. 新疆百口泉闪长岩中高An值斜长石的成因及岩石学意义[J]. 岩石学报, 2015, 31(2): 479−490.
Chen Bo, Zhu Yongfeng. The origin of high-An plagioclase in diorite from Baikouquan, Xinjiang and its petrogenetic significance[J]. Acta Petrologica Sinica, 2015, 31(2): 479−490.
|
[41] |
Bindeman I N, Davis A M, Drake M J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements[J]. Geochimica et Cosmochimica Acta, 1998, 62(7): 1175−1193. doi: 10.1016/S0016-7037(98)00047-7
|
[42] |
Ginibre C, Wörner G, Kronz A. Minor-and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 143(3): 300−315. doi: 10.1007/s00410-002-0351-z
|
[43] |
Nelson S T, Montana A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression[J]. American Mineralogist, 1992, 77(11/12): 1242−1249.
|
[44] |
Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497: 146−161. doi: 10.1016/j.chemgeo.2018.09.002
|
[45] |
李原鸿, 黄方, 于慧敏, 等. 加勒比海小安德列斯岛弧Kick’em Jenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化[J]. 岩石学报, 2016, 32(2): 605−616.
Li Yuanhong, Huang Fang, Yu Huimin, et al. Plagioclase zoning in submarine volcano Kick’em Jenny, Lesser Antilles Arc: insights into magma evolution processes in oceanic arc magma chamber[J]. Acta Petrologica Sinica, 2016, 32(2): 605−616.
|
[46] |
Blundy J, Cashman K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631−650. doi: 10.1007/s004100000219
|
[47] |
李俊录, 崔建军, 张维. 东太平洋海隆1°N洋中脊玄武岩斜长石斑晶的化学特征及其对岩浆作用的指示意义[J]. 地质与勘探, 2019, 55(2): 562−569.
Li Junlu, Cui Jianjun, Zhang Wei. Chemical characteristics of plagioclase phenocrysts in MORBs from the East Pacific Rise 1°N and implication for magmatic processes[J]. Geology and Exploration, 2019, 55(2): 562−569.
|