Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 7
Nov.  2020
Turn off MathJax
Article Contents
Zhao Song,Dong Linsen,Wang Xiangqin, et al. Composition and provenance analysis of rare-earth elements in the manganese-rich brown layers of the Mendeleev Ridge, Arctic Ocean[J]. Haiyang Xuebao,2020, 42(7):78–92 doi: 10.3969/j.issn.0253-4193.2020.07.007
Citation: Zhao Song,Dong Linsen,Wang Xiangqin, et al. Composition and provenance analysis of rare-earth elements in the manganese-rich brown layers of the Mendeleev Ridge, Arctic Ocean[J]. Haiyang Xuebao,2020, 42(7):78–92 doi: 10.3969/j.issn.0253-4193.2020.07.007

Composition and provenance analysis of rare-earth elements in the manganese-rich brown layers of the Mendeleev Ridge, Arctic Ocean

doi: 10.3969/j.issn.0253-4193.2020.07.007
  • Received Date: 2019-10-21
  • Rev Recd Date: 2019-12-04
  • Available Online: 2020-11-18
  • Publish Date: 2020-07-25
  • The Mn (manganese)-rich brown layers (brown layers) distribute widely in the Arctic Ocean seafloor which controlled by sea ice, surface currents, material supply and so on. In this study, we investigate the provenance and composition feature of brown layers based on changes of contents on rare earth and trace elements, coarse fraction, inorganic carbon and colour reflectance of core ARC07-E25 retrieved from the Mendeleev Ridge, western Arctic Ocean. Total rare earth elements (∑REE) changes between 122.37×10−6 to 231.94×10−6, the north American Shale normalized records of the sediments generally show enrichment in medium rare earth element (MREE) and light rare earth element (LREE) which dominated by lanthanum (La), cerium (Ce) and neodymium (Nd), respectively. With the increase of coarse fraction, such as ice rafted detritus (IRD), the decrease trend of ∑REE indicates REE mainly enrich in fine grain fraction in the Mendeleev Ridge sediments. The differences of REE contents between brown and gray layers, which are classified in the core based on various characteristics of ∑REE, demonstrate distinct Ce anomalies in the brown layer and grey layer associated with different redox conditions: it will be oxidized from Ce3+ to Ce4+ in oxic brown layers and be reduced from Ce4+ to Ce3+ in gray layers. This behavior favors the large variation of ∑LREE content and affects the ∑REE content in the sediments. Consequently, the ∑REE contents are increasing in the brown layers representing oxidation condition and decreasing in the gray layer representing reduction condition. The results of R-type factor analysis show that the REE in sediments have a good correlation with the detritus elements (Nb, U and Th), and mainly derived from inshore erosion of the East Siberian continental shelf, New Siberian Islands and input of the Lena River.
  • loading
  • [1]
    Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012, 489(7414): 137−140. doi: 10.1038/nature11392
    [2]
    Shakhova N, Semiletov I, Sergienko V, et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2052): 20140451. doi: 10.1098/rsta.2014.0451
    [3]
    Tesi T, Muschitiello F, Smittenberg R H, et al. Massive remobilization of permafrost carbon during post-glacial warming[J]. Nature Communications, 2016, 7: 13653. doi: 10.1038/ncomms13653
    [4]
    McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169−200.
    [5]
    Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172(1/2): 91−115.
    [6]
    Bischof J F, Darby D A. Mid- to late pleistocene ice drift in the western arctic ocean: evidence for a different circulation in the past[J]. Science, 1997, 277(5322): 74−78. doi: 10.1126/science.277.5322.74
    [7]
    Stein R, Matthießen J, Niessen F, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97−121.
    [8]
    Stein R. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment[M]. United Kingdom: Elsevier, 2008: 3−30.
    [9]
    Weber J R. Physiography and Bathymetry of the Arctic Ocean seafloor[M]//Herman Y, eds. The Arctic Seas. Boston, MA: Springer, 1989: 797-805.
    [10]
    Niessen F, Hong J K, Hegewald A, et al. Repeated pleistocene glaciation of the East Siberian continental margin[J]. Nature Geoscience, 2013, 6(10): 842−846. doi: 10.1038/ngeo1904
    [11]
    Brigham-Grette J. A fresh look at Arctic ice sheets[J]. Nature Geoscience, 2013, 6(10): 807−808. doi: 10.1038/ngeo1960
    [12]
    Jakobsson M, Nilsson J, Anderson L, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation[J]. Nature Communications, 2016, 7: 10365. doi: 10.1038/ncomms10365
    [13]
    Svendsen J I, Alexanderson H, Astakhov V I, et al. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews, 2004, 23(11/13): 1229−1271.
    [14]
    Stärz M, Gong Xun, Stein R, et al. Glacial shortcut of Arctic sea-ice transport[J]. Earth and Planetary Science Letters, 2012, 357-358: 257−267. doi: 10.1016/j.jpgl.2012.09.033
    [15]
    Moritz R E. Dynamics of recent climate change in the Arctic[J]. Science, 2002, 297(5586): 1497−1502. doi: 10.1126/science.1076522
    [16]
    Boström K. Origin of manganese-rich layers in Arctic sediments[J]. AAPG Bulletin, 1970, 54(12): 2471−2472.
    [17]
    Löwemark L, März C, O’Regan, et al. Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation[J]. Quaternary Science Reviews, 2014, 92: 97−111. doi: 10.1016/j.quascirev.2013.11.018
    [18]
    Darby D A, Naidu A S, Mowatt T C, et al. Sediment composition and sedimentary processes in the Arctic Ocean[M]// Herman Y, eds. The Arctic Seas. Boston, MA: Springer, 1989, 657−690.
    [19]
    Poore R Z, Phillips R L, Rieck H J. Paleoclimate record for northwind ridge, western Arctic Ocean[J]. Paleoceanography and Paleoclimatology, 1993, 8(2): 149−159.
    [20]
    Darby D A, Polyak L, Bauch H A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas-A review[J]. Progress in Oceanography, 2006, 71(2/4): 129−144.
    [21]
    Rohling E J, Foster G L, Grant K M, et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years[J]. Nature, 2014, 508(7497): 477−482. doi: 10.1038/nature13230
    [22]
    Wang Rujian, Polyak L, Xiao Wenshen, et al. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales[J]. Quaternary Science Reviews, 2018, 181: 93−108. doi: 10.1016/j.quascirev.2017.12.006
    [23]
    Ye Liming, März C, Polyak L, et al. Dynamics of manganese and cerium enrichments in Arctic Ocean sediments: a case study from the alpha ridge[J]. Frontiers in Earth Science, 2019, 6: 236. doi: 10.3389/feart.2018.00236
    [24]
    Jakobsson M, Løvlie R, Al-Hanbali H, et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology, 2000, 28(1): 23−26. doi: 10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2
    [25]
    Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1/2): 73−93.
    [26]
    März C, Schnetger B, Brumsack H J. Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry[J]. Paleoceanography and Paleoclimatology, 2010, 25(3): PA3206.
    [27]
    März C, Stratmann A, Matthies R, et al. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7668−7687. doi: 10.1016/j.gca.2011.09.046
    [28]
    O'Regan M, Moran K, Backman J, et al. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean[J]. Paleoceanography and Paleoclimatology, 2008, 23(1): PA1S20.
    [29]
    Astakhov A S, Semiletov I P, Sattarova V V, et al. Rare earth elements in the bottom sediments of the East Arctic seas of Russia as indicators of terrigenous input[J]. Doklady Earth Sciences, 2018, 482(2): 1324−1327. doi: 10.1134/S1028334X18100021
    [30]
    Astakhov A S, Sattarova V V, Shi Xuefa, et al. Distribution and sources of rare earth elements in sediments of the Chukchi and East Siberian Seas[J]. Polar Science, 2019, 20: 148−159. doi: 10.1016/j.polar.2019.05.005
    [31]
    Wang Rujian, Xiao Wenshen, März C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean[J]. Global and Planetary Change, 2013, 108: 100−118. doi: 10.1016/j.gloplacha.2013.05.017
    [32]
    Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge[J]. Quaternary Science Reviews, 2014, 92: 140−154. doi: 10.1016/j.quascirev.2013.12.011
    [33]
    Dong Lisen, Liu Yanguang, Shi Xuefa, et al. Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history[J]. Climate of the Past, 2017, 13(5): 511−531. doi: 10.5194/cp-13-511-2017
    [34]
    Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean)[J]. Journal of Quaternary Science, 2017, 32(3): 362−379. doi: 10.1002/jqs.2929
    [35]
    Yang Shouye, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93−120.
    [36]
    窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012(2): 147−158. doi: 10.3969/j.issn.0379-1726.2012.02.006

    Dou Yanguang, Li Jun, Li Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf[J]. Geochimica, 2012(2): 147−158. doi: 10.3969/j.issn.0379-1726.2012.02.006
    [37]
    Taylor S R, McClennan S M. The Continental Crust: its Composition and Evolution[M]. Hoboken, NJ: Blackwell Scientific Publications, 1985: 3−20.
    [38]
    Song Y H, Choi M S. REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea[J]. Chemical Geology, 2009, 266(3/4): 328−342.
    [39]
    Dou Yanguang, Yang Shouye, Lim D I, et al. Provenance discrimination of last deglacial and Holocene sediments in the southwest of Cheju Island, East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 422: 25−35. doi: 10.1016/j.palaeo.2015.01.016
    [40]
    De Baar H J W, German C R, Elderfield H, et al. Rare earth element distributions in anoxic waters of the Cariaco Trench[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1203−1219. doi: 10.1016/0016-7037(88)90275-X
    [41]
    German C R, Elderfield H. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin[J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2561−2571. doi: 10.1016/0016-7037(89)90128-2
    [42]
    张颖, 汪虹敏, 王小静, 等. 深海沉积物元素现场测定及方法对比研究[J]. 分析化学, 2018, 46(4): 570−577. doi: 10.11895/j.issn.0253-3820.171204

    Zhang Ying, Wang Hongmin, Wang Xiaojing, et al. On-site determination of element concentrations in marine sediments and comparative study of analytical methods[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 570−577. doi: 10.11895/j.issn.0253-3820.171204
    [43]
    Byrne R H, Sholkovitz E R. Marine chemistry and geochemistry of the lanthanides[J]. Handbook on the Physics and Chemistry of Rare Earths, 1996, 23: 497−593. doi: 10.1016/S0168-1273(96)23009-0
    [44]
    白亚之, 刘季花, 张辉, 等. 海洋沉积物有机碳和总氮分析方法[J]. 海洋环境科学, 2013, 32(3): 444−447, 459.

    Bai Yazhi, Liu Jihua, Zhang Hui, et al. The analysis of organic carbon and total nitrogen in marine sediments[J]. Marine Environmental Science, 2013, 32(3): 444−447, 459.
    [45]
    Gromet L P, Silver S T. Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 925−939. doi: 10.1016/0016-7037(83)90158-8
    [46]
    Rachold V. Major, trace and rare earth element geochemistry of suspended particulate material of east Siberian rivers draining to the Arctic Ocean[M]//Kassens H, eds. Land-Ocean Systems in the Siberian Arctic. Berlin, Heidelberg: Springer, 1999: 199−222.
    [47]
    Millot R, Gaillardet J, Dupré B, et al. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1305−1329. doi: 10.1016/S0016-7037(02)01207-3
    [48]
    Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2008, 27(2): 114−127. doi: 10.1111/j.1751-8369.2008.00057.x
    [49]
    Matthiessen J, Niessen F, Stein R, et al. Pleistocene glacial marine sedimentary environments at the Eastern Mendeleev Ridge, Arctic Ocean[J]. Polarforschung, 2010, 79(2): 123−137.
    [50]
    Adler R E, Polyak L, Ortiz J D, et al. Sediment record from the western Arctic Ocean with an improved late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge[J]. Global and Planetary Change, 2009, 68(1/2): 18−29.
    [51]
    Bazhenova E, Fagel N, Stein R. North American origin of “pink-white” layers at the Mendeleev Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment component[J]. Marine Geology, 2017, 386: 44−55. doi: 10.1016/j.margeo.2017.01.010
    [52]
    Bischof J A, Clark D L, Vincent J S. Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean[J]. Paleoceanography and Paleoclimatology, 1996, 11(6): 743−756.
    [53]
    Darby D A, Myers W B, Jakobsson M, et al. Modern dirty sea ice characteristics and sources: the role of anchor ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09008.
    [54]
    Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3): 249−284. doi: 10.1016/0012-8252(93)90040-E
    [55]
    许淑梅, 张晓东, 翟世奎, 等. 海洋环境中氧化还原敏感性微量元素的地球化学行为及环境指示意义[J]. 海洋地质动态, 2007, 23(3): 11−18. doi: 10.3969/j.issn.1009-2722.2007.03.002

    Xu Shumei, Zhang Xiaodong, Zhai Shikui, et al. The geochemistry of redox sensitive trace elements and their environmental implications[J]. Marine Geology Letters, 2007, 23(3): 11−18. doi: 10.3969/j.issn.1009-2722.2007.03.002
    [56]
    Goldberg E D. Marine geochemistry 1. Chemical scavengers of the sea[J]. The Journal of Geology, 1954, 62(3): 249−265. doi: 10.1086/626161
    [57]
    吴明清, 欧阳自远. 铈异常——一个寻迹古海洋氧化还原条件变化的化学示踪剂[J]. 科学通报, 1992, 37(3): 242−242.

    Wu Mingqing, Ouyang Ziyuan. Cerium anomaly-A chemical tracer indicating changes in REDOX conditions in ancient oceans[J]. Science Bulletin, 1992, 37(3): 242−242.
    [58]
    Westerlund S, Ohman P. Rare earth elements in the Arctic Ocean[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1992, 39(9): 1613−1626. doi: 10.1016/0198-0149(92)90051-T
    [59]
    De Baar H J W, Bacon M P, Brewer P G. Rare-earth distributions with a positive Ce anomaly in the western North Atlantic Ocean[J]. Nature, 1983, 301(5898): 324−327. doi: 10.1038/301324a0
    [60]
    Soyol-Erdene T O, Huh Y. Rare earth element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2013, 358: 75−89. doi: 10.1016/j.chemgeo.2013.08.047
    [61]
    Yang Shouye, Li Congxian, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 2003, 48(11): 1135−1139. doi: 10.1007/BF03185768
    [62]
    Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: a wind-and buoyancy-forced Arctic coastal current[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 29697−29713. doi: 10.1029/1999JC900161
    [63]
    Viscosi-Shirley C, Pisias N, Mammone K. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J]. Continental Shelf Research, 2003, 23(11/13): 1201−1225.
    [64]
    Huh Y, Panteleyev G, Babich D, et al. The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges[J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2053−2075. doi: 10.1016/S0016-7037(98)00127-6
    [65]
    Rachold V, Eisenhauer A, Hubberten H W, et al. Sr isotopic composition of suspended particulate material (SPM) of East Siberian rivers-sediment transport to the Arctic Ocean[J]. Arctic and Alpine Research, 1997, 29(4): 422−429. doi: 10.2307/1551990
    [66]
    Schirrmeister L, Schwamborn G, Overduin P P, et al. Yedoma ice complex of the Buor Khaya Peninsula (southern Laptev Sea)[J]. Biogeosciences, 2017, 14(5): 1261−1283. doi: 10.5194/bg-14-1261-2017
    [67]
    Vladykin N V, Torbeeva T S. Lamproites of the Tomtor massif (eastern Anabar area)[J]. Russian Geology and Geophysics, 2005, 46(10): 1038−1049.
    [68]
    曹振华, 胡超涌. 热液硫酸盐矿物中稀土元素地球化学特征[J]. 非金属矿, 2008, 31(4): 18−20. doi: 10.3969/j.issn.1000-8098.2008.04.007

    Cao Zhenhua, Hu Chaoyong. Geochemistry characteristics of rare earth elements in hydrothermal sulfate minerals[J]. Non-Metallic Mines, 2008, 31(4): 18−20. doi: 10.3969/j.issn.1000-8098.2008.04.007
    [69]
    曹红, 曹志敏, 李军, 等. 西南印度洋中脊热液沉积稀土元素地球化学特征[J]. 矿物学报, 2011(S1): 686−687.

    Cao Hong, Cao Zhimin, Li Jun, et al. Geochemical characteristics of hydrothermal deposition of rare earth elements in the mid-ridge of the southwest Indian Ocean[J]. Acta Mineralogica Sinica, 2011(S1): 686−687.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (277) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return