Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wen Mingzheng,Chen Tian,Hu Yunzhuang, et al. Sediment resuspension of bottom boundary layer under waves and currents[J]. Haiyang Xuebao,2020, 42(3):97–106,doi:10.3969/j.issn.0253−4193.2020.03.009
Citation: Wen Mingzheng,Chen Tian,Hu Yunzhuang, et al. Sediment resuspension of bottom boundary layer under waves and currents[J]. Haiyang Xuebao,2020, 42(3):97–106,doi:10.3969/j.issn.0253−4193.2020.03.009

Sediment resuspension of bottom boundary layer under waves and currents

doi: 10.3969/j.issn.0253-4193.2020.03.009
  • Received Date: 2019-01-14
  • Rev Recd Date: 2019-05-26
  • Available Online: 2020-11-18
  • Publish Date: 2020-03-25
  • Resuspension and its distribution of sediment depend upon three interacting components namely the characteristics of the mobile sediment, the bed forms and the forcing hydrodynamics. A good understanding of the process of sediment resuspension is important in sediment transport. In this paper, in-situ measurements of wave, current, and suspended sediment concentration profiles in the marine ranching of Xiangyun Bay were carried out. The vertical distribution characteristics of suspended sediment in the bottom boundary layer under the wave-current action were analyzed. The results show that the resuspension of seabed sediments in the study area is controlled by storm-waves. The bottom shear stress under storm wave is 10−15 times of the critical shear stress of sediment, resuspension of sediment lags behind storm-wave for 2−3 hours. The type of vertical distribution of suspended sediment is "I" under small wave load, the vertical distribution of suspended sediment in the bottom boundary layer presents a power exponential function, which is "L" type under storm-wave. Bedforms evolved with wave and current action, and which affected the resuspension process of sediments. ${u_{*w}}{\rm{/}}{u_{*c}} = 1.00$ can be used as a criterion to distinguish the bedfroms under the dominant control of wave or current. The value of ${u_{*w}}{\rm{/}}{u_{*c}}$ under wave load is higher than that under the dominant control of wave, and the cutoff value between them increased with the increase of wave load.
  • loading
  • [1]
    Van Rjin Consultant L C, Ribberink J S, Van Der Werf Engineer J, et al. Coastal sediment dynamics: recent advances and future research needs[J]. Journal of Hydraulic Research, 2013, 51(5): 475−493. doi: 10.1080/00221686.2013.849297
    [2]
    Davies A G, Thorne P D. Advances in the study of moving sediments and evolving seabeds[J]. Surveys in Geophysics, 2008, 29(1): 1−36. doi: 10.1007/s10712-008-9039-x
    [3]
    Thorne P D, Williams J J, Davies A G. Suspended sediments under waves measured in a large-scale flume facility[J]. Journal of Geophysical Research: Oceans, 2002, 107(C8): 3178. doi: 10.1029/2001JC000988
    [4]
    Taal L J. Field measurements of vertical suspended sand concentration profiles in the surfzone in Egmond aan Zee, the Netherlands[D]. Utrecht: Utrecht University, 2015.
    [5]
    Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam, The Netherlands: Aqua Publications, 1993.
    [6]
    O'Brien M P. Review of the theory of turbulent flow and its relation to sediment-transportation[J]. Eos, Transactions American Geophysical Union, 1933, 14(1): 487−491. doi: 10.1029/TR014i001p00487
    [7]
    Rouse H. Modern conceptions of the mechanics of fluid turbulence[J]. Trans ASCE, 1937, 102(3): 463−543.
    [8]
    Middleton G V, Southard J B. Mechanics of Sediment Movement[M]. 2nd ed. Oklahoma: SEPM, 1984.
    [9]
    Zheng Jun, Li Ruijie, Feng Qing, et al. Vertical profiles of fluid velocity and suspended sediment concentration in nearshore[J]. International Journal of Sediment Research, 2013, 28(3): 406−412. doi: 10.1016/S1001-6279(13)60050-5
    [10]
    O’Hara Murray R B, Hodgson D M, Thorne P D. Wave groups and sediment resuspension processes over evolving sandy bedforms[J]. Continental Shelf Research, 2012, 46: 16−30. doi: 10.1016/j.csr.2012.02.011
    [11]
    Grant W D, Madsen O S. The continental-shelf bottom boundary layer[J]. Annual Review of Fluid Mechanics, 1986, 18(1): 265−305. doi: 10.1146/annurev.fl.18.010186.001405
    [12]
    Camenen B. Estimation of the wave-related ripple characteristics and induced bed shear stress[J]. Estuarine, Coastal and Shelf Science, 2009, 84(4): 553−564. doi: 10.1016/j.ecss.2009.07.022
    [13]
    Huisman C E. Sediment concentrations and diffusivity profiles under skewed waves from ripple to sheet flow regime[D]. Utrecht: Utrecht University, 2009.
    [14]
    Kleinhans M G. Phase diagrams of bed states in steady, unsteady, oscillatory and mixed flows[M]//Van Rijn L, Soulsby R L, Hoekstra S P, et al. Sandpit Project. Amsterdam: Aqua Publications, 2005.
    [15]
    Soulsby R L. Dynamics of Marine Sands. A Manual for Practical Applications[M]. London: Thomas Telford Publications, Thomas Telford Services Ltd, 1997.
    [16]
    陈文超, 邱若峰, 邢容容, 等. 基于强浪下的祥云岛岸滩侵淤特征及防护措施[J]. 海洋地质前沿, 2016, 32(11): 40−46.

    Chen Wenchao, Qiu Ruofeng, Xing Rongrong, et al. Beach erosion and deposition under storm and defense measures[J]. Marine Geology Frontiers, 2016, 32(11): 40−46.
    [17]
    孙林云, 孙波, 刘建军, 等. 京唐港粉沙质海岸风暴潮骤淤及整治工程措施物理模型试验[J]. 中国港湾建设, 2010(Z1): 28−31, 52. doi: 10.3969/j.issn.1003-3688.2010.z1.006

    Sun Zhiyun, Sun Bo, Liu Jianjun, et al. Physical model tests on sudden siltation caused by storm and mitigation measures for fine sand coast in Jingtang Port[J]. China Harbour Engineering, 2010(Z1): 28−31, 52. doi: 10.3969/j.issn.1003-3688.2010.z1.006
    [18]
    邢超锋, 何青, 郭磊城, 等. ASM在近底泥沙浓度剖面观测中的应用研究[J]. 泥沙研究, 2015(6): 46−51.

    Xing Chaofeng, He Qing, Guo Leicheng, et al. Application of ASM at the bottom observation of suspended sediment concentration[J]. Journal of Sediment Reasearch, 2015(6): 46−51.
    [19]
    Downing J. Twenty-five years with OBS sensors: The good, the bad, and the ugly[J]. Continental Shelf Research, 2006, 26(17/18): 2299−2318.
    [20]
    薛元忠, 何青, 王元叶. OBS浊度计测量泥沙浓度的方法与实践研究[J]. 泥沙研究, 2004(4): 56−60. doi: 10.3321/j.issn:0468-155X.2004.04.010

    Xue Yuanzhong, He Qing, Wang Yuanye. The method and application of OBS in the measurement of sediment concentration[J]. Journal of Sediment Reasearch, 2004(4): 56−60. doi: 10.3321/j.issn:0468-155X.2004.04.010
    [21]
    鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报, 2012, 34(5): 39−49.

    Lu Yuanzheng, Wu Jiaxue, Liu Huan. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Haiyang Xuebao, 2012, 34(5): 39−49.
    [22]
    Chanson H, Trevethan M, Aoki S I. Acoustic Doppler velocimetry (ADV) in small estuary: Field experience and signal post-processing[J]. Flow Measurement and Instrumentation, 2008, 19(5): 307−313. doi: 10.1016/j.flowmeasinst.2008.03.003
    [23]
    Yang Yang, Wang Yaping, Gao Shu, et al. Sediment resuspension in tidally dominated coastal environments: new insights into the threshold for initial movement[J]. Ocean Dynamics, 2016, 66(3): 401−417. doi: 10.1007/s10236-016-0930-6
    [24]
    Bolaños R, Thorne P D, Wolf J. Comparison of measurements and models of bed stress, bedforms and suspended sediments under combined currents and waves[J]. Coastal Engineering, 2012, 62: 19−30. doi: 10.1016/j.coastaleng.2011.12.005
    [25]
    Arnott R W C, Southard J B. Exploratory flow-duct experiments on combined-flow bed configurations and some implications for interpreting storm-event stratification[J]. Journal of Sedimentary Petrology, 1990, 60(1): 211−219.
    [26]
    Kobayashi N, Zhao Haoyu, Tega Y. Suspended sand transport in surf zones[J]. Journal of Geophysical Research: Oceans, 2005, 110(C12): C12009. doi: 10.1029/2004JC002853
    [27]
    Nielsen P. Coastal bottom boundary layers and sediment transport[M]//Liu P L F. Advanced Series on Ocean Engineering. Singapore: World Scientific Publishing Co. Pte. Ltd., 1992.
    [28]
    Li M Z, Amos C L. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment[J]. Continental Shelf Research, 1998, 18(9): 941−970. doi: 10.1016/S0278-4343(98)00034-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (870) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return