Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Lin Guoyao, Gong Wenping. Tidal asymmetry and tide-induced residual currents in the Yinggehai Coast, Hainan Island[J]. Haiyang Xuebao, 2017, 39(7): 36-42. doi: 10.3969/j.issn.0253-4193.2017.07.004
Citation: Lin Guoyao, Gong Wenping. Tidal asymmetry and tide-induced residual currents in the Yinggehai Coast, Hainan Island[J]. Haiyang Xuebao, 2017, 39(7): 36-42. doi: 10.3969/j.issn.0253-4193.2017.07.004

Tidal asymmetry and tide-induced residual currents in the Yinggehai Coast, Hainan Island

doi: 10.3969/j.issn.0253-4193.2017.07.004
  • Received Date: 2016-07-07
  • Rev Recd Date: 2016-10-29
  • Tidal asymmetry and tide-induced residual circulation play important roles in mass transport in estuarine and coastal seas. Previous studies have shown that the flood and ebb duration asymmetry corresponds well to the tidal velocity asymmetry in estuaries and embayments where standing tidal waves dominate. The tide-induced residual circulation is mainly from the nonlinear interaction between tides and bathymetry. This study takes the Yinggehai Coast as an example to study the tidal asymmetry and residual circulation in open coast with complex bathymetry, through combination of field observation and numerical simulation. Our results show that the flood duration is shorter than the ebb duration, while the velocity asymmetry manifests a complex spatial variability. The underlying mechanisms are that the velocity asymmetry is mainly induced by the interactions among K1, O1, and M2 and the interactions among the residual flow and tidal constituents. The former contribution results in a flood dominance, while the latter contribution results in a spatial distribution similar to the residual current. Overall, the interactions among the residual current and tidal constituents determine the pattern of the velocity asymmetry. For the tide-induced residual current, the Euler residual is greatly stronger than the Stokes one. There exist many clockwise and anti-clockwise eddies in the study site, and the clockwise eddies are generally associated with the tidal sand ridges well, while the anti-clockwise eddies are located in the deep troughs. The conservation of potential vorticity largely determines the residual circulation pattern, along with the bottom friction playing a critical role as well.
  • Jia Jianjun, Gao Shu, Xue Yunchuan. Sediment dynamic processes of the Yuehu Inlet system, Shandong Peninsula, China[J]. Estuarine, Coastal and Shelf Science, 2003, 57(5):783-801.
    de Swart H E, Zimmerman J T F. Morphodynamics of tidal inlet systems[J]. Annual Review of Fluid Mechanics, 2009, 41:203-229.
    Friedrichs C T. Tidal Flat Morphodynamics:A Synthesis[M]//Reference Module in Earth Systems and Environmental Sciences. Waltham:Elsevier, 2012.
    Aubrey D G, Speer P E. A study of non-linear tidal propagation in shallow inlet estuarine systems. Part 2:Observations[J]. Estuarine, Coastal and Shelf Science, 1985, 21(2):185-205.
    Jewell S A, Walker D J, Fortunato A B. Tidal asymmetry in a coastal lagoon subject to a mixed tidal regime[J]. Geomorphology, 2012, 138:171-180.
    Nidzieko N J. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides[J]. Journal of Geophysical Research, 2010,115, C08006, doi: 10.1029/2009JC005864.
    Song Dehai, Wang Xiaohua, Kiss A E, et al. The contribution to tidal asymmetry by different combinations of tidal constituents[J]. Journal of Geophysical Research, 2011,116:C12007.
    Hoitink A J F, Hoekstra P, van Maren D S. Flow asymmetry associated with astronomical tides:Implications for the residual transport of sediment[J]. Journal of Geophysical Research, 2003, 108(C10):3315.
    Tee K T. Tide-induced residual current, a 2-D nonlinear numerical tidal model[J]. Journal of Marine Research, 1976, 34(4):603-628.
    李谊纯. 一个潮流不对称计算方法及其在北仑河口的应用[J]. 海洋工程, 2014, 32(4):110-116. Li Yichun. A method of quantifying tidal current asymmetry and its application in the Beilun River estuary[J]. The Ocean Engineering, 2014, 32(4):110-116.
    Gong Wenping, Schuttelaars H, Zhang Heng. Tidal asymmetry in a funnel shaped estuary with mixed semi-diurnal tides[J]. Ocean Dynamics, 2016, 66(5):637-658.
    龚文平, 张恒, 陈兆云, 等. 海南省乐东县莺歌海渔业加工区及配套码头建设项目岸滩演变分析[R]. 广州:中山大学, 2016:129. Gong Wenping, Zhang Heng, Chen Zhaoyun, et al. Analysis of coastal evolution of the Yinggehai fishery processing and companion dock project in Luodong, Hainan[R]. Guangzhou:Sun Yat-sen University, 2016:129.
    Lesser G R, Roelvink J A, van Kester J A T M, et al. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering, 2004, 51(8/9):883-915.
    Emery W J, Thomason R E. Data Analysis Methods in Physical Oceanography[M]. 2nd edition. Amsterdam:Elsevier, 2001.
    Nidzieko N J, Ralston D K. Tidal asymmetry and velocity skew over tidal flats and shallow channels within a macrotidal river delta[J]. Journal of Geophysical Research, 2012, 117:C03001.
    Yuan Jiliang, Yang Zhaoqing, Huang Daji, et al. Tidal residual current and its role in the mean flow on the Changjiang Bank[J]. Journal of Marine Systems, 2014, 154:66-81.
    Robinson I S. Tidal vorticity and residual circulation[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1981, 28(3):195-212.
    Loder J W. Topographic rectification of tidal currents on the sides of Georges Bank[J]. Journal of Physical Oceanography, 1980, 10(9):1399-1416.
  • Relative Articles

  • Cited by

    Periodical cited type(8)

    1. 陈旭,翁培耀,陈振华. 基于钦州湾验潮站2008-2020年潮位序列的潮汐特征研究. 广西科学. 2024(01): 71-78 .
    2. 周曾,陈璐莹,蒋春海,储鏖,Ian Townend,张长宽. 河口地貌对潮汐不对称性影响的数值模拟研究. 海洋学报. 2022(07): 37-46 . 本站查看
    3. 陈云,戴志军,张敏,梅雪菲. 长江口新桥水道潮汐不对称性研究. 海洋通报. 2022(05): 528-536 .
    4. 陈元杰,程鹏. 中国东部海域潮汐余流特征及其动力分析. 海洋通报. 2021(04): 396-409 .
    5. 刘文龙,毛晨浩,陈维,蒋茗韬,宋春梅. 安海湾疏浚工程潮流响应特征研究. 浙江海洋大学学报(自然科学版). 2021(05): 439-448 .
    6. 张蔚,郁夏琰,徐怡,杨晨,唐明昊,方拥军. 三峡流量调节对长江口潮汐不对称的影响. 河海大学学报(自然科学版). 2020(02): 143-149 .
    7. 童朝锋,曹益铭,高祥宇,孟艳秋. 海南红塘湾潮汐不对称性分析. 水利水运工程学报. 2019(03): 9-15 .
    8. 黄炳智,胡泽建,金永德,迟万清,刘鑫仓,刘豪. 北黄海北部海域潮余流的模拟研究. 海岸工程. 2019(02): 134-143 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.9 %FULLTEXT: 8.9 %META: 89.1 %META: 89.1 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.0 %其他: 2.0 %China: 0.3 %China: 0.3 %三亚: 0.3 %三亚: 0.3 %上海: 2.3 %上海: 2.3 %兰州: 0.3 %兰州: 0.3 %北京: 5.3 %北京: 5.3 %南京: 0.3 %南京: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.3 %天津: 0.3 %布拉格: 0.3 %布拉格: 0.3 %广州: 2.3 %广州: 2.3 %张家口: 3.6 %张家口: 3.6 %新乡: 0.7 %新乡: 0.7 %杭州: 2.3 %杭州: 2.3 %柳州: 0.3 %柳州: 0.3 %武汉: 1.0 %武汉: 1.0 %湖州: 0.3 %湖州: 0.3 %漯河: 0.3 %漯河: 0.3 %芒廷维尤: 39.7 %芒廷维尤: 39.7 %西宁: 33.4 %西宁: 33.4 %通辽: 2.0 %通辽: 2.0 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %青岛: 0.7 %青岛: 0.7 %其他China三亚上海兰州北京南京嘉兴天津布拉格广州张家口新乡杭州柳州武汉湖州漯河芒廷维尤西宁通辽郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1354) PDF downloads(1105) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return