Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Zhang Youguang,Lin Jing. Evaluation of sea surface high wind speed inversion method using joint satellite radar altimeter and radiometer data[J]. Haiyang Xuebao,2025, 47(4):1–11 doi: 10.12284/hyxb2025025
Citation: Zhang Youguang,Lin Jing. Evaluation of sea surface high wind speed inversion method using joint satellite radar altimeter and radiometer data[J]. Haiyang Xuebao,2025, 47(4):1–11 doi: 10.12284/hyxb2025025

Evaluation of sea surface high wind speed inversion method using joint satellite radar altimeter and radiometer data

doi: 10.12284/hyxb2025025
  • Received Date: 2024-07-16
  • Rev Recd Date: 2025-02-12
  • Available Online: 2025-04-15
  • Based on the Jason series satellite data from 2002 to 2020, the wind speed information of 431 hurricanes was obtained by using a high wind speed calculation method. On this basis, the best track data sets of hurricanes in the Atlantic and Northeast Pacific of the United States hurricane center based on reanalysis are compared and analyzed, and the high wind speed calculation method is comprehensively evaluated. The calculation and evaluation results show that the wind speed RMSE of 8.03−66.93 m/s hurricane is better than 4 m/s; the correlation coefficient between satellite wind speed and NHC hurricane best path data is above 0.9. This shows that the method in this paper is reliable and has the ability to observe the high wind speed of tropical cyclone. At the same time, the analysis results in the paper show that the hurricane observation period is almost accompanied by different degrees of rainfall. When the wind speed is greater than 50 m/s, the satellite observation points are in the moderate to heavy rain environment. The research in this paper proves the feasibility of using satellite radar altimeter and calibration radiometer to jointly obtain wind speed information in extreme marine environment, which provides a potential technical means for improving the wind speed observation ability of typhoon or hurricane. In addition, the statistical results show that there is also a good correlation between wind speed and pressure during the hurricane. This relationship can be used to quickly calculate the central pressure of tropical cyclone based on the high wind speed information obtained by satellite, which will form the satellite's ability to synchronously acquire the wind speed and central pressure of tropical cyclone.
  • loading
  • [1]
    Brown G, Stanley H, Roy N. The wind-speed measurement capability of spaceborne radar altimeters[J]. IEEE Journal of Oceanic Engineering, 1981, 6(2): 59−63. doi: 10.1109/JOE.1981.1145484
    [2]
    Chelton D B, Mccabe P J. A review of satellite altimeter measurement of sea surface wind speed: with a proposed new algorithm[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4707−4720. doi: 10.1029/JC090iC03p04707
    [3]
    Chelton D B, Wentz F J. Further development of an improved altimeter wind speed algorithm[J]. Journal of Geophysical Research: Oceans, 1986, 91(C12): 14250−14260. doi: 10.1029/JC091iC12p14250
    [4]
    Witter D L, Chelton D B. A geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development[J]. Journal of Geophysical Research: Oceans, 1991, 96(C5): 8853−8860. doi: 10.1029/91JC00414
    [5]
    Glazman R E, Greysukh A. Satellite altimeter measurements of surface wind[C]//Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium. Tokyo: IEEE, 1993: 1567−1569.
    [6]
    Monaldo F, Dobson E. On using significant wave height and radar cross section to improve radar altimeter measurements of wind speed[J]. Journal of Geophysical Research: Oceans, 1989, 94(C9): 12699−12701. doi: 10.1029/JC094iC09p12699
    [7]
    Zhao Dongliang, Toba Y. A spectral approach for determining altimeter wind speed model functions[J]. Journal of Oceanography, 2003, 59(2): 235−244. doi: 10.1023/A:1025599423405
    [8]
    Gourrion J, Vandemark D C, Bailey S A, et al. A two-parameter wind speed algorithm for Ku-band altimeters[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(12): 2030−2048. doi: 10.1175/1520-0426(2002)019<2030:ATPWSA>2.0.CO;2
    [9]
    陈戈, 方朝阳, 徐萍. 利用双波段补偿法提高卫星高度计海面风速反演精度[J]. 中国图象图形学报, 1999, 4(11): 970−975. doi: 10.11834/jig.1999011230

    Chen Ge, Fang Chaoyang, Xu Ping. Using a dual-frequency adjustment approach to improve the accuracy of altimeter retrieved sea surface wind speed[J]. Journal of Image and Graphics, 1999, 4(11): 970−975 doi: 10.11834/jig.1999011230
    [10]
    Quartly G D, Guymer T H, Srokosz M A. The effects of rain on topex radar altimeter data[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(6): 1209−1229. doi: 10.1175/1520-0426(1996)013<1209:TEOROT>2.0.CO;2
    [11]
    Tian Jiasheng, Liu Qiaoyun, Pan Wan, et al. Improved algorithm of retrieving oceanic surface wind speed based on a stratified media model at high sea states[J]. IET Microwaves, Antennas & Propagation, 2014, 8(15): 1333−1339.
    [12]
    Young I R. An estimate of the Geosat altimeter wind speed algorithm at high wind speeds[J]. Journal of Geophysical Research: Oceans, 1993, 98(C11): 20275−20285. doi: 10.1029/93JC02117
    [13]
    Sharoni S M H, Md Reba M N, Hossain M S. Tropical cyclone wind speed estimation from satellite altimeter-derived ocean parameters[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016988. doi: 10.1029/2020JC016988
    [14]
    Quilfen Y, Prigent C, Chapron B, et al. The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions[J]. Journal of Geophysical Research: Oceans, 2007, 112(C9): C09023.
    [15]
    Powell M D. Near-surface based, airborne, and satellite observations of tropical cyclones[M]//Chan J C J, Kepert J D. Global Perspectives on Tropical Cyclones: From Science to Mitigation. Singapore: World Scientific Publishing Company, 2010: 177−199.
    [16]
    张有广, 贾永君, 林明森, 等. 基于HY-2卫星数据的热带气旋风速和气压反演[J]. 遥感学报, 2024, 28(6): 1588−1601.

    Zhang Youguang, Jia Yongjun, Lin Mingsen, et al. A retrieval method of tropical cyclone wind speed and sea level pressure based on HY-2 satellite data[J]. National Remote Sensing Bulletin, 2024, 28(6): 1588−1601.
    [17]
    Lin Mingsen, Zhang Youguang. 中国海洋卫星发展现状和主要应用进展(英文)[J]. Aerospace China, 2022, 23(1): 41−54. (查阅网上资料, 本条文献为英文文献, 请确认)

    Lin Mingsen, Zhang Youguang. The development status and main application progress of China's ocean satellites(English)[J]. Aerospace China, 2022, 23(1): 41−54.
    [18]
    Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western north Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [19]
    Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [20]
    Delgado S, Landsea C W, Willoughby H. Reanalysis of the 1954–63 Atlantic hurricane seasons[J]. Journal of Climate, 2018, 31(11): 4177−4192. doi: 10.1175/JCLI-D-15-0537.1
    [21]
    Kieper M E, Landsea C W, Beven J L. A reanalysis of hurricane Camille[J]. Bulletin of the American Meteorological Society, 2016, 97(3): 367−384. doi: 10.1175/BAMS-D-14-00137.1
    [22]
    Landsea C W, Glenn D A, Bredemeyer W, et al. A reanalysis of the 1911–20 Atlantic hurricane database[J]. Journal of Climate, 2008, 21(10): 2138−2168. doi: 10.1175/2007JCLI1119.1
    [23]
    Landsea C W, Franklin J L. Atlantic hurricane database uncertainty and presentation of a new database format[J]. Monthly Weather Review, 2013, 141(10): 3576−3592. doi: 10.1175/MWR-D-12-00254.1
    [24]
    Landsea C W, Feuer S, Hagen A, et al. A reanalysis of the 1921–30 Atlantic hurricane database[J]. Journal of Climate, 2012, 25(3): 865−885. doi: 10.1175/JCLI-D-11-00026.1
    [25]
    Landsea C W, Anderson C, Clark G, et al. The Atlantic hurricane database re-analysis project: results for 1851-1899[C]//Proceedings of the 12th Symposium on Global Change Studies and Climate Variations. Boston: American Meteorological Society, 2001.
    [26]
    Hagen A B, Strahan-Sakoskie D, Luckett C. A reanalysis of the 1944–53 Atlantic hurricane seasons—the first decade of aircraft reconnaissance[J]. Journal of Climate, 2012, 25(13): 4441−4460. doi: 10.1175/JCLI-D-11-00419.1
    [27]
    中国气象服务协会. 短时气象服务降雨量等级: T/CMSA0013-2019[S]. 2019.

    China Meteorological Service Association. The grade of rainfall in short time weather service: T/CMSA0013-2019[S]. 2019.
    [28]
    窦贤豪. 基于星载雷达高度计的中高海况海面参数校正方法研究[D]. 武汉: 华中科技大学, 2021.

    Dou Xianhao Research on sea surface parameter correction method for medium and high sea condition based on spaceborne radar altimeter[D]. Wuhan: Huazhong University of Science & Technology, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(9)

    Article views (74) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return