Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Zhao Ruonan,Li Gang,He Yijun. Energy analysis of submesoscale processes in the Agulhas current system[J]. Haiyang Xuebao,2024, 46(1):27–38 doi: 10.12284/hyxb2024070
Citation: Zhao Ruonan,Li Gang,He Yijun. Energy analysis of submesoscale processes in the Agulhas current system[J]. Haiyang Xuebao,2024, 46(1):27–38 doi: 10.12284/hyxb2024070

Energy analysis of submesoscale processes in the Agulhas current system

doi: 10.12284/hyxb2024070
  • Received Date: 2023-08-13
  • Rev Recd Date: 2023-11-06
  • Available Online: 2024-03-27
  • Publish Date: 2024-01-01
  • Based on the high-resolution oceanic numerical model product of MITgcm with a resolution of (1/48)°, the geostrophic balanced motion and unbalanced wave motion are decomposed via the frequency-wavenumber spectrum analysis method to analyze the distribution of submesoscale characteristics and diagnose the main factors affecting their seasonal variations in the Agulhas current system. The results show that the submesoscale processes in the Agulhas current system have a significant seasonal distribution with strong features in winter but weak features in summer. The mixed layer baroclinic instability is the main reason affecting the submesoscale seasonal differences in the area. In addition, the geostrophic balanced motions are predominant in the submesoscale process in the regions with stronger eddy kinetic energy (EKE) and have no obvious seasonality. For the regions with weaker EKE, the balanced and unbalanced geostrophic motions show significant seasonality, where the local mixing layer shallowness is responsible for the increase of the unbalanced kinetic energy in summer. Our analysis helps to further clarify the characteristics of submesoscale seasonal variation and its primary factors in the Agulhas current system. The effective separation of geostrophic balanced and unbalanced motion enhances our understanding of energy transformation between multiscale processes in the ocean.
  • loading
  • [1]
    Bracco A, Liu Guangpeng, Sun Daoxun. Mesoscale-submesoscale interactions in the Gulf of Mexico: from oil dispersion to climate[J]. Chaos, Solitons & Fractals, 2019, 119: 63−72.
    [2]
    Thomas L N, Taylor J R, Ferrari R, et al. Symmetric instability in the Gulf Stream[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 91: 96−110. doi: 10.1016/j.dsr2.2013.02.025
    [3]
    McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117.
    [4]
    Gula J, Blacic T M, Todd R E. Submesoscale coherent vortices in the gulf stream[J]. Geophysical Research Letters, 2019, 46(5): 2704−2714. doi: 10.1029/2019GL081919
    [5]
    郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析[J]. 热带海洋学报, 2018, 37(3): 19−25.

    Zheng Ruixi, Jing Zhiyou, Luo Shihao. Analysis of sub-mesoscale dynamic processes in the periphery of anticyclonic eddy in the northern South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(3): 19−25.
    [6]
    Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. Scale transition from geostrophic motions to internal waves in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9364−9383. doi: 10.1029/2019JC015575
    [7]
    Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations[J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015404. doi: 10.1029/2019JC015404
    [8]
    Dong Jihai, Fox-Kemper B, Zhang Hong, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6): e2020GL087388. doi: 10.1029/2020GL087388
    [9]
    罗士浩, 经志友, 闫桐, 等. 黑潮延伸体海域次中尺度过程的季节变化研究[J]. 热带海洋学报, 2021, 40(1): 1−11.

    Luo Shihao, Jing Zhiyou, Yan Tong, et al. Seasonal variability of submesoscale flows in the Kuroshio Extension[J]. Journal of Tropical Oceanography, 2021, 40(1): 1−11.
    [10]
    Mensa J A, Garraffo Z, Griffa A, et al. Seasonality of the submesoscale dynamics in the Gulf Stream region[J]. Ocean Dynamics, 2013, 63(8): 923−941. doi: 10.1007/s10236-013-0633-1
    [11]
    Buckingham C E, Garabato A C N, Thompson A F, et al. Seasonality of submesoscale flows in the ocean surface boundary layer[J]. Geophysical Research Letters, 2016, 43(5): 2118−2126. doi: 10.1002/2016GL068009
    [12]
    Dong Jihai, Zhong Jihai. The spatiotemporal features of submesoscale processes in the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(11): 8−18. doi: 10.1007/s13131-018-1277-2
    [13]
    Haine T W N, Marshall J. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer[J]. Journal of Physical Oceanography, 1998, 28(4): 634−658. doi: 10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2
    [14]
    Su Zhan, Wang Jinbo, Klein P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775. doi: 10.1038/s41467-018-02983-w
    [15]
    Beal L M, De Ruijter W P M, Biastoch A, et al. On the role of the Agulhas system in ocean circulation and climate[J]. Nature, 2011, 472(7344): 429−436. doi: 10.1038/nature09983
    [16]
    Schubert R, Gula J, Biastoch A. Submesoscale flows impact Agulhas leakage in ocean simulations[J]. Communications Earth & Environment, 2021, 2(1): 197.
    [17]
    Schubert R, Schwarzkopf F U, Baschek B, et al. Submesoscale impacts on mesoscale Agulhas dynamics[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(8): 2745−2767. doi: 10.1029/2019MS001724
    [18]
    Schubert R, Gula J, Greatbatch R J, et al. The submesoscale kinetic energy cascade: mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes[J]. Journal of Physical Oceanography, 2020, 50(9): 2573−2589. doi: 10.1175/JPO-D-19-0311.1
    [19]
    Capuano T A, Speich S, Carton X, et al. Mesoscale and submesoscale processes in the Southeast Atlantic and their impact on the regional thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 1937−1961. doi: 10.1002/2017JC013396
    [20]
    Schubert R. The impact of submesoscale flows on mesoscale Agulhas dynamics[D]. Kiel: Christian-Albrechts-Universität zu Kiel, 2020.
    [21]
    de Ruijter W P M, Biastoch A, Drijfhout S S, et al. Indian-Atlantic interocean exchange: dynamics, estimation and impact[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20885−20910. doi: 10.1029/1998JC900099
    [22]
    Zhang Ruize, Sun Shantong, Chen Zhaohui, et al. Rapid 21st century weakening of the Agulhas current in a warming climate[J]. Geophysical Research Letters, 2023, 50(4): e2022GL102070. doi: 10.1029/2022GL102070
    [23]
    Taylor J R, Thompson A F. Submesoscale dynamics in the upper ocean[J]. Annual Review of Fluid Mechanics, 2023, 55: 103−127. doi: 10.1146/annurev-fluid-031422-095147
    [24]
    Torres H S, Klein P, Menemenlis D, et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8084−8105. doi: 10.1029/2018JC014438
    [25]
    Qiu Bo, Chen Shuiming, Klein P, et al. Seasonality in transition scale from balanced to unbalanced motions in the world ocean[J]. Journal of Physical Oceanography, 2018, 48(3): 591−605. doi: 10.1175/JPO-D-17-0169.1
    [26]
    Menemenlis D, Campin J M, Heimbach P, et al. ECCO2: high resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newslettel, 2008, 31: 13−21.
    [27]
    Zhang Zhiwei, Liu Yuelin, Qiu Bo, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14(1): 1335. doi: 10.1038/s41467-023-36991-2
    [28]
    Chelton D B, Deszoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433−460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    [29]
    Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. Submesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific Subtropical Ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 83−100. doi: 10.1175/JPO-D-20-0076.1
    [30]
    Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(1): 187−206. doi: 10.1175/JPO-D-20-0100.1
    [31]
    Sullivan P P, McWilliams J C. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer[J]. Journal of Fluid Mechanics, 2018, 837: 341−380. doi: 10.1017/jfm.2017.833
    [32]
    Gula J, Molemaker M J, McWilliams J C. Submesoscale dynamics of a gulf stream frontal eddy in the South Atlantic Bight[J]. Journal of Physical Oceanography, 2016, 46(1): 305−325. doi: 10.1175/JPO-D-14-0258.1
    [33]
    Hoskins B J. The role of potential vorticity in symmetric stability and instability[J]. Quarterly Journal of the Royal Meteorological Society, 1974, 100(425): 480−482. doi: 10.1002/qj.49710042520
    [34]
    Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics[M]//Hecht M W, Hasumi H. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 2013.
    [35]
    Cao Haijin, Fox-Kemper B, Jing Zhiyou. Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: energy budget[J]. Journal of Physical Oceanography, 2021, 51(7): 2181−2201.
    [36]
    张晓璐, 熊学军. 渤海夏季第一斜压罗斯贝变形半径的计算与分析[J]. 海洋科学进展, 2015, 33(3): 295−304. doi: 10.3969/j.issn.1671-6647.2015.03.003

    Zhang Xiaolu, Xiong Xuejun. Calculation and analysis of the first Baroclinic Rossby deformation radius in summer in the Bohai Sea[J]. Advances in Marine Science, 2015, 33(3): 295−304. doi: 10.3969/j.issn.1671-6647.2015.03.003
    [37]
    Capet X, McWilliams J C, Molemaker M J, et al. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests[J]. Journal of Physical Oceanography, 2008, 38(1): 29−43. doi: 10.1175/2007JPO3671.1
    [38]
    Dong Jihai, Jing Zhiyou, Fox-Kemper B, et al. Effects of symmetric instability in the Kuroshio Extension region in winter[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2022, 202: 105142. doi: 10.1016/j.dsr2.2022.105142
    [39]
    Taylor J R, Ferrari R. On the equilibration of a symmetrically unstable front via a secondary shear instability[J]. Journal of Fluid Mechanics, 2009, 622: 103−113. doi: 10.1017/S0022112008005272
    [40]
    Callies J, Ferrari R, Klymak J M, et al. Seasonality in submesoscale turbulence[J]. Nature Communications, 2015, 6(1): 6862. doi: 10.1038/ncomms7862
    [41]
    Rocha C B, Gille S T, Chereskin T K, et al. Seasonality of submesoscale dynamics in the Kuroshio Extension[J]. Geophysical Research Letters, 2016, 43(21): 11304−11311.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (91) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return