Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Ma Ruiyang,Zhong Qiangqiang,Wang Hao, et al. Assessment of 210Po, 210Bi and 210Pb in aerosols and their deposition fluxes in the nearshore region of the East China Sea[J]. Haiyang Xuebao,2024, 46(x):1–11 doi: 10.12284/hyxb2024054
Citation: Ma Ruiyang,Zhong Qiangqiang,Wang Hao, et al. Assessment of 210Po, 210Bi and 210Pb in aerosols and their deposition fluxes in the nearshore region of the East China Sea[J]. Haiyang Xuebao,2024, 46(x):1–11 doi: 10.12284/hyxb2024054

Assessment of 210Po, 210Bi and 210Pb in aerosols and their deposition fluxes in the nearshore region of the East China Sea

doi: 10.12284/hyxb2024054
  • Received Date: 2023-07-20
  • Rev Recd Date: 2024-01-09
  • Available Online: 2024-03-11
  • The deposition fluxes of 210Po, 210Bi and 210Pb in atmosphere are the basis for the application of radionuclide tracing in the ocean. In order to reveal the spatio-temporal variation of the activity of 210Po, 210Bi and 210Pb in nearshore areas and estimate their deposition fluxes into the sea, In this paper, sampling observation and analysis of two typical areas near the East China Sea in Shanghai and Xiamen in different periods are carried out.A time series study was conducted on the activity of 210Po, 210Pb and 210Bi in Shanghai and Xiamen from September 2016 to February 2017 and from September to December 2021, respectively. The residence time of particulate matter was calculated based on 210Po/210Pb and 210Bi/210Pb. Deposition fluxes of three nuclides were also estimated. This paper reported the activity of 210Po, 210Bi and 210Pb in Shanghai in autumn and winter of 2016.The activity ranges of 210Po, 210Pb and 210Bi were 0.11-1.27 mBq/m3, 0.45-1.83 mBq/m3 and 1.12-6.10 mBq/m3, respectively. In the fall of 2021, the activity ranges of 210Po, 210Bi and 210Pb in Xiamen were 0.05-0.85mBq/m3, 0.61-2.42mBq/m3 and 0.18-1.32mBq/m3, respectively.The activity of each nuclide in Shanghai was higher than that in Xiamen. The aerosol residence time (τPo-Pb) over Shanghai and Xiamen are 28-202d and 19-355d, respectively. In this paper, based on a one-dimensional simple aerosol deposition rate model, the atmospheric deposition fluxes of 210Pb, 210Bi and 210Po over Shanghai area into the East China Sea are estimated, and their variation ranges are 0.1-26.35Bq /m2/d, 0.04-7.91Bq /m2/d and 0.01-5.49 Bq /m2/d, respectively. The sedimentation fluxes of 210Po, 210Bi and 210Pb estimated based on the model are close to the actual observed values in the study area during the same period in winter within a certain range. The feasibility of estimating the deposition flux of nuclide into the sea with a simple one dimensional aerosol deposition rate model is verified.
  • loading
  • [1]
    Cresswell T, Metian M, Fisher N S, et al. Exploring new frontiers in marine radioisotope tracing–adapting to new opportunities and challenges[J]. Frontiers in Marine Science, 2020, 7: 406. doi: 10.3389/fmars.2020.00406
    [2]
    Shannon L V, Cherry R D, Orren M J. Polonium-210 and lead-210 in the marine environment[J]. Geochimica et Cosmochimica Acta, 1970, 34(6): 701−711. doi: 10.1016/0016-7037(70)90072-4
    [3]
    钟强强. 核素大气沉降过程及其对上层海洋POC输出通量研究的启示[D]. 上海: 华东师范大学, 2020.

    Zhong Qiangqiang. Atmospheric deposition of radionuclides and its application in POC export fluxes of the upper sea[D]. Shanghai: East China Normal University, 2020.
    [4]
    Stewart G, Cochran J K, Miquel J C, et al. Comparing POC export from 234Th/238U and 210Po/210Pb disequilibria with estimates from sediment traps in the northwest Mediterranean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(9): 1549−1570. doi: 10.1016/j.dsr.2007.06.005
    [5]
    Murray J W, Paul B, Dunne J P, et al. 234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: tracers for particle cycling[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(11): 2109−2139. doi: 10.1016/j.dsr.2005.06.016
    [6]
    Verdeny E, Masqué P, Garcia-Orellana J, et al. POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: a review of the use of two radiotracer pairs[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(18): 1502−1518. doi: 10.1016/j.dsr2.2008.12.018
    [7]
    Friedrich J, Van Der Loeff M M R. A two-tracer (210Po–234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(1): 101−120. doi: 10.1016/S0967-0637(01)00045-0
    [8]
    Wei C L, Lin S Y, Sheu D D D, et al. Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea[J]. Biogeosciences, 2011, 8(12): 3793−3808. doi: 10.5194/bg-8-3793-2011
    [9]
    Anand S S, Rengarajan R, Shenoy D, et al. POC export fluxes in the Arabian Sea and the Bay of Bengal: a simultaneous 234Th/238U and 210Po/210Pb study[J]. Marine Chemistry, 2018, 198: 70−87. doi: 10.1016/j.marchem.2017.11.005
    [10]
    Shelley R U, Roca-Martí M, Castrillejo M, et al. Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (> 40 N; GEOVIDE, GEOTRACES GA01) during spring 2014[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 119: 34−49. doi: 10.1016/j.dsr.2016.11.010
    [11]
    Verdeny E, Masqué P, Maiti K, et al. Particle export within cyclonic Hawaiian lee eddies derived from 210Pb–210Po disequilibrium[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(10-13): 1461−1472. doi: 10.1016/j.dsr2.2008.02.009
    [12]
    Horowitz E J, Cochran J K, Bacon M P, et al. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 164: 103339. doi: 10.1016/j.dsr.2020.103339
    [13]
    Zhang Fule, Wang Jinlong, Baskaran M, et al. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux[J]. Earth System Science Data, 2021, 13(6): 2963−2994. doi: 10.5194/essd-13-2963-2021
    [14]
    Zhong Qiangqiang, Puigcorbé V, Sanders C, et al. Analysis of 210Po, 210Bi, and 210Pb in atmospheric and oceanic samples by simultaneously auto-plating 210Po and 210Bi onto a nickel disc[J]. Journal of Environmental Radioactivity, 2020, 220−221: 106301. doi: 10.1016/j.jenvrad.2020.106301
    [15]
    杜娟. 大气散落放射性核素沉降过程的研究及其在示踪东海海域现代沉积过程中的应用[D]. 上海: 华东师范大学, 2019.

    Du Juan. Study on the depositional processes of the atmospheric fallout radionuclides and their application on tracing modern sedimentation processes at the East China Sea[D]. Shanghai: East China Normal University, 2019.
    [16]
    Deng Binbin, Zhong Qiangqiang, Wang Qiugui, et al. Temporal variation of 210Pb concentration in the urban aerosols of Shanghai, China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(3): 1135−1143. doi: 10.1007/s10967-020-07027-6
    [17]
    钟强强, 王求贵, 于涛, 等. 210Po-210Pb 活度不平衡鉴年法测定北极冰区表层冰雪年龄[J]. 海洋学报, 2022, 44(9): 63−72.

    Zhong Qiangqiang, Wang Qiugui, Yu Tao, et al. Dating the age of surficial snow in the Arctic Ocean by 210Po-210Pb activity disequilibria[J]. Haiyang Xuebao, 2022, 44(9): 63−72.
    [18]
    Wei Ziran, Cochran J K, Horowitz E, et al. 210Pb and 7Be as coupled flux and source tracers for aerosols in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2022, 36(8): e2022GB007378. doi: 10.1029/2022GB007378
    [19]
    Zalewska T, Biernacik D, Marosz M. Correlations between 7Be, 210Pb, dust and PM10 concentrations in relation to meteorological conditions in northern Poland in 1998-2018[J]. Journal of Environmental Radioactivity, 2021, 228: 106526. doi: 10.1016/j.jenvrad.2020.106526
    [20]
    Rastogi N, Sarin M M. Atmospheric 210Pb and 7Be in ambient aerosols over low-and high-altitude sites in semiarid region: temporal variability and transport processes[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D11): D11103.
    [21]
    Carvalho F P. Origins and concentrations of 222Rn, 210Pb, 210Bi and 210Po in the surface air at Lisbon, Portugal, at the Atlantic edge of the European continental landmass[J]. Atmospheric Environment, 1995, 29(15): 1809−1819. doi: 10.1016/1352-2310(95)00076-B
    [22]
    Papastefanou C, Bondietti E A. Mean residence times of atmospheric aerosols in the boundary layer as determined from 210Bi/210Pb activity ratios[J]. Journal of Aerosol Science, 1991, 22(7): 927−931. doi: 10.1016/0021-8502(91)90085-V
    [23]
    Ram K, Sarin M M. Atmospheric 210Pb, 210Po and 210Po/210Pb activity ratio in urban aerosols: temporal variability and impact of biomass burning emission[J]. Tellus B:Chemical and Physical Meteorology, 2012, 64(1): 17513. doi: 10.3402/tellusb.v64i0.17513
    [24]
    Baskaran M, Shaw G E. Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be[J]. Journal of Aerosol Science, 2001, 32(4): 443−452. doi: 10.1016/S0021-8502(00)00093-8
    [25]
    Poet S E, Moore H E, Martell E A. Lead 210, bismuth 210, and polonium 210 in the atmosphere: accurate ratio measurement and application to aerosol residence time determination[J]. Journal of Geophysical Research, 1972, 77(33): 6515−6527. doi: 10.1029/JC077i033p06515
    [26]
    Moore H E, Poet S E, Martell E A. 222Rn, 210Pb, 210Bi, and 210Po profiles and aerosol residence times versus altitude[J]. Journal of Geophysical Research, 1973, 78(30): 7065−7075. doi: 10.1029/JC078i030p07065
    [27]
    Chen Jinfang, Luo Shangde, Huang Yipu. Scavenging and fractionation of particle-reactive radioisotopes 7Be, 210Pb and 210Po in the atmosphere[J]. Geochimica et Cosmochimica Acta, 2016, 188: 208−223. doi: 10.1016/j.gca.2016.05.039
    [28]
    Baskaran M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review[J]. Journal of Environmental Radioactivity, 2011, 102(5): 500−513. doi: 10.1016/j.jenvrad.2010.10.007
    [29]
    Semertzidou P, Piliposian G T, Appleby P G. Atmospheric residence time of 210Pb determined from the activity ratios with its daughter radionuclides 210Bi and 210Po[J]. Journal of Environmental Radioactivity, 2016, 160: 42−53. doi: 10.1016/j.jenvrad.2016.04.019
    [30]
    Papastefanou C. Residence time of tropospheric aerosols in association with radioactive nuclides[J]. Applied Radiation and Isotopes, 2006, 64(1): 93−100. doi: 10.1016/j.apradiso.2005.07.006
    [31]
    李加兴, 潘竞舜, 文富平, 等. 大气气溶胶滞留时间计算和分析[J]. 辐射防护通讯, 2013, 33

    ): 25-28, 33. Li Jiaxing, Pan Jingshun, Wen Fuping, et al. Calculation and analysis of aerosol residence times in atmosphere[J]. Radiation Protection Bulletin, 2013, 33(3): 25-28, 33.
    [32]
    Lambert G, Polian G, Sanak J, et al. The cycle of radon and its decay products: An application to study of troposphere-stratosphere exchange[J]. Annales de Geophusique, 1982, 38: 497−531.
    [33]
    Turekian K K, Benninger L K, Dion E P. 7Be and 210Pb total deposition fluxes at New Haven, Connecticut and at Bermuda[J]. Journal of Geophysical Research: Oceans, 1983, 88(C9): 5411−5415. doi: 10.1029/JC088iC09p05411
    [34]
    吴家堡, 李涌, 刘国卿, 等. 深圳市大气210Pb的活度浓度、沉降通量和沉积速率研究[J]. 地球化学, 2021, 50(2): 219−225.

    Wu Jiabao, Li Yong, Liu Guoqing, et al. Activity concentrations, depositional fluxes and deposition velocities of 210Pb in atmospheric aerosols of Shenzhen[J]. Geochimica, 2021, 50(2): 219−225.
    [35]
    Winkler R, Rosner G. Seasonal and long-term variation of 210Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany[J]. Science of the Total Environment, 2000, 263(1-3): 57−68. doi: 10.1016/S0048-9697(00)00666-5
    [36]
    赵峰. 长江口及黄海海域中210Po和210Pb的环境分布及其活性不平衡现象[D]. 上海: 华东师范大学, 2010.

    Zhao Feng. Distribution and radioactive disequilibrium of 210Po and 210Pb in Changjiang estuary and the Yellow Sea[D]. Shanghai: East China Normal University, 2010.
    [37]
    易勇, 白洁, 刘广山, 等. 青岛市7Be, 210Pb和210Po大气沉降通量的测定[J]. 海洋科学, 2005, 29(12): 20−24. doi: 10.3969/j.issn.1000-3096.2005.12.005

    Yi Yong, Bai Jie, Liu Guangshan, et al. Measurements of atmospheric deposition fluxes of 7Be, 210Pb and 210Po[J]. Marine Sciences, 2005, 29(12): 20−24. doi: 10.3969/j.issn.1000-3096.2005.12.005
    [38]
    赵丽君. 多核素示踪的河口海岸现代沉积物年代学比较研究[D]. 上海: 华东师范大学, 2018.

    Zhao Lijun. Comparative study on the chronology in the recent sediment of estuary and coast by multi-radionuclides[D]. Shanghai: East China Normal University, 2018.
    [39]
    郝丽, 刘乐平, 申亚飞. 统计显著性: 一个被误读的P值——基于美国统计学会的声明[J]. 统计与信息论坛, 2016, 31(12): 3−10. doi: 10.3969/j.issn.1007-3116.2016.12.001

    Hao Li, Liu Leping, Shen Yafei. Statistical significance: a misreading of p-Values-based on the official statement of ASA[J]. Statistics & Information Forum, 2016, 31(12): 3−10. doi: 10.3969/j.issn.1007-3116.2016.12.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (67) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return