Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Wang Wen,Zhao Xiujiang,Ding Ling, et al. Research on the structure and characteristics of Chongming Island adjacent waters ecosystem based on Rpath[J]. Haiyang Xuebao,2024, 46(1):121–130 doi: 10.12284/hyxb2024022
Citation: Wang Wen,Zhao Xiujiang,Ding Ling, et al. Research on the structure and characteristics of Chongming Island adjacent waters ecosystem based on Rpath[J]. Haiyang Xuebao,2024, 46(1):121–130 doi: 10.12284/hyxb2024022

Research on the structure and characteristics of Chongming Island adjacent waters ecosystem based on Rpath

doi: 10.12284/hyxb2024022
  • Received Date: 2023-05-30
  • Rev Recd Date: 2023-10-30
  • Available Online: 2023-12-19
  • Publish Date: 2024-01-01
  • Based on the comprehensive fishery survey in the Chongming Island adjacent waters in November 2020, January 2021, April 2021, and August 2021, we used an open-source program Rpath to build a mass balance model containing 22 functional groups for this area. The ecosystem structure and characteristics in this sea area were then studied. Results showed that the trophic level for these 18 functional groups ranged from 1 to 4.32, with the highest trophic level of bottom carnivorous fish. The ecological transfer efficiency of small benthic organisms is the lowest (0.01), suggesting a bottleneck in their energy transfer to higher trophic levels and indicated it was the bottleneck to limit the energy transfer in the benthic food chain. The analysis of the overall characteristics of the ecosystem shows that the total system throughput of the Chongming Island adjacent waters ecosystem was 2 909.42 t/(km2·a), which was lower than that of the nearby marine ecosystem. Phytoplankton contributes 60% of the energy to the total primary productivity of the ecosystem and was the main nutrient source of this ecosystem. The total primary production/total respiration is 1.99 and the system omnivorous index is 0.18. This indicate that the Chongming Island adjacent waters ecosystem has low maturity, simple trophic interaction, and low recovery ability after disturbance. Sensitivity analysis showed that functional group biomass was the main index that affected the accuracy of ecosystem model output. The results of this study can provide a reference for the evaluation of the effect of the Changjiang River fishing ban.
  • loading
  • [1]
    罗秉征. 河口及近海的生态特点与渔业资源[J]. 长江流域资源与环境, 1992(1): 24−30.

    Luo Bingzheng. Ecological characteristics and fishery resources of the Yangtze River Estuary and adjacent sea areas[J]. Resources and Environment in the Yangtze Valley, 1992(1): 24−30.
    [2]
    池连宝. 长江口及邻近海域低氧区的时空变化特征与关键过程研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.

    Chi Lianbao. The spatial-temporal distributions and key processes of hypoxia off the Changjiang Estuary and its adjacent waters[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2019.
    [3]
    王金辉, 徐韧, 秦玉涛, 等. 长江口基础生物资源现状及年际变化趋势分析[J]. 中国海洋大学学报(自然科学版), 2006, 36(5): 821−828.

    Wang Jinhui, Xu Ren, Qin Yutao, et al. The basic biological resources and variation during the last decades in the Changjiang Estuary[J]. Periodical of Ocean University of China, 2006, 36(5): 821−828.
    [4]
    王远超. 长江口及其邻近海域能流网络结构与年际动态[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.

    Wang Yuanchao. Modelling the structure and interannual dynamics of energy flows in Yangtze Eestuary and its adjacent waters[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2019.
    [5]
    中华人民共和国农业农村部. 农业农村部关于设立长江口禁捕管理区的通告[J]. 中华人民共和国农业农村部公报, 2020(12): 92−93.

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice on the Establishment of a Fishing Ban Management Area in the Yangtze River Estuary by the Ministry of Agriculture and Rural Affairs of the People’s Republic of China[J]. Bulletin of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020(12): 92−93.
    [6]
    马凤娇, 杨彦平, 方弟安, 等. 长江禁捕后长江口刀鲚资源特征[J]. 水生生物学报, 2022, 46(10): 1580−1590.

    Ma Fengjiao, Yang Yanping, Fang Di’an, et al. Characteristics of Coilia nasus resources after fishing ban in the Yangtze River[J]. Acta Hydrobiologica Sinica, 2022, 46(10): 1580−1590.
    [7]
    Ulanowicz R E, Puccia C J. Mixed trophic impacts in ecosystems[J]. Coenoses, 1990, 5(1): 7−16.
    [8]
    Christensen V, Walters C J, Pauly D. Ecopath with Ecosim: a user’s guide[EB/OL]. [2023−05−01]. https://www.researchgate.net/publication/267193103
    [9]
    Heymans J J, Coll M, Link J S, et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management[J]. Ecological Modelling, 2016, 331: 173−184.
    [10]
    王玮, 王俊杰, 左平, 等. 基于Ecopath模型的西南黄海生态系统结构和能量流动分析[J]. 应用海洋学学报, 2019, 38(4): 528−539.

    Wang Wei, Wang Junjie, Zuo Ping, et al. Analysis of structure and energy flow in southwestern Yellow Sea ecosystem based on Ecopath model[J]. Journal of Applied Oceanography, 2019, 38(4): 528−539.
    [11]
    任晓明, 刘阳, 徐宾铎, 等. 基于Ecopath模型的海州湾及邻近海域生态系统结构研究[J]. 海洋学报, 2020, 42(6): 101−109.

    Ren Xiaoming, Liu Yang, Xu Binduo, et al. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model[J]. Haiyang Xuebao, 2020, 42(6): 101−109.
    [12]
    Taghavimotlagh S A, Vahabnezhad A, Shojaei M G. A trophic model of the coastal fisheries ecosystem of the northern Persian Gulf using a mass balance Ecopath model[J]. Regional Studies in Marine Science, 2021, 42: 101639. doi: 10.1016/j.rsma.2021.101639
    [13]
    Lucey S M, Gaichas S K, Aydin K Y. Conducting reproducible ecosystem modeling using the open source mass balance model Rpath[J]. Ecological Modelling, 2020, 427: 109057. doi: 10.1016/j.ecolmodel.2020.109057
    [14]
    Whitehouse G A, Aydin K Y. Assessing the sensitivity of three Alaska marine food webs to perturbations: an example of Ecosim simulations using Rpath[J]. Ecological Modelling, 2020, 429: 109074. doi: 10.1016/j.ecolmodel.2020.109074
    [15]
    Han Dongyan, Zhang Chongliang, Xue Ying, et al. Impacts of sample size for stomach content analysis on the estimation of ecosystem indices[J]. Acta Oceanologica Sinica, 2020, 39(8): 53−61.
    [16]
    张效嘉. 长江口近海能流网络分析与鱼类群落研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2015.

    Zhang Xiaojia. Energy network analysis and fish community in adjacent waters of Yangtze Estuary[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2015.
    [17]
    徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3): 309−318.

    Xu Chao, Wang Sikai, Zhao Feng, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries, 2018, 40(3): 309−318.
    [18]
    王殿常, 吴兴华, 丁玲, 等. 基于Ecopath模型的长江口生态系统结构与功能分析[J]. 环境工程技术学报, 2022, 12(2): 417−425.

    Wang Dianchang, Wu Xinghua, Ding Ling, et al. A preliminary analysis of the ecosystemstructure and function of the Yangtze Estuary based on Ecopath model[J]. Journal of Environmental Engineering Technology, 2022, 12(2): 417−425.
    [19]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 海洋调查规范 第 6 部分 海洋生物调查 :GB/T 12763.6−2007 [S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Specifications for oceanographic survey. Part 6: Marine biological survey: GB/T 12763.6−2007 [S]. Beijing: Standards Press of China, 2008.
    [20]
    国家海洋局. 海洋监测规范 第 6 部分: 生物体分析: GB 17378.6−2007[S]. 北京: 标准出版社, 2007.

    National Marine Data and Information Service. Specifications for marine monitoring. Part 6: Organism analysis: GB 17378.6−2007[S]. Beijing: Standards Press of China, 2007.
    [21]
    中国环境科学研究院. 近岸海域环境监测规范: HJ 442−2008[S]. 北京: 中国环境科学出版社, 2008.

    Chinese Research Academy of Environmental Sciences. Specifications for offshore environmental monitoring: HJ 442−2008[S]. Beijing: China Environmental Science Press, 2008.
    [22]
    Gulland J A. The Fish Resources of the Ocean[M]. Rome: Food and Agriculture Organization of the United Nations, 1971.
    [23]
    欧阳力剑, 郭学武. 东、黄海主要鱼类Q/B值与种群摄食量研究[J]. 渔业科学进展, 2010, 31(2): 23−29.

    Ouyang Lijian, Guo Xuewu. Studies on the Q/B values and food consumption of major fishes in the East China Sea and the Yellow Sea[J]. Progress in Fishery Science, 2010, 31(2): 23−29.
    [24]
    Funtowicz S O, Ravetz J R. Uncertainty and Quality in Science for Policy[M]. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1990.
    [25]
    Guesnet V, Lassalle G, Chaalali A, et al. Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators[J]. Ecological Modelling, 2015, 313: 29−40. doi: 10.1016/j.ecolmodel.2015.05.036
    [26]
    Odum E P. The strategy of ecosystem development[J]. Science, 1969, 164(3877): 262−270. doi: 10.1126/science.164.3877.262
    [27]
    Wickham H. Data Analysis[M]. Houston, Texas, USA: Springer Cham, 2016.
    [28]
    林群, 金显仕, 郭学武, 等. 基于Ecopath模型的长江口及毗邻水域生态系统结构和能量流动研究[J]. 水生态学杂志, 2009, 30(2): 28−36.

    Lin Qun, Jin Xianshi, Guo Xuewu, et al. Study on the structure and energy flow of the Yangtze River Estuary and adjacent waters ecosystem based on Ecopath model[J]. Journal of Hydroecology, 2009, 30(2): 28−36.
    [29]
    赵晨. 长江口海洋牧场示范区海域生态系统结构与功能研究[D]. 大连: 大连海洋大学, 2019.

    Zhao Chen. Analysis of ecosystem structure and function in the Yangtze Estuary Marine Ranch[D]. Dalian: Dalian Ocean University, 2019.
    [30]
    刘志豪, 韩东燕, 高春霞, 等. 基于捕食者CPUE权重的浙江南部近海龙头鱼摄食习性分析[J]. 中国水产科学, 2021, 28(4): 482−492.

    Liu Zhihao, Han Dongyan, Gao Chunxia, et al. Feeding habits of Bombay ducks (Harpadon nehereus) in the offshorewaters of southern Zhejiang, based on predator CPUE weighting[J]. Journal of Fishery Sciences of China, 2021, 28(4): 482−492.
    [31]
    潘绪伟, 程家骅. 长江口外海域龙头鱼营养生态学特征[J]. 中国水产科学, 2011, 18(5): 1132−1140.

    Pan Xuwei, Cheng Jiahua. Feeding ecology of Harpadon nehereus in areas adjacent to Changjiang River Estuary[J]. Journal of Fishery Sciences of China, 2011, 18(5): 1132−1140.
    [32]
    庄平, 罗刚, 张涛, 等. 长江口水域中华鲟幼鱼与6种主要经济鱼类的食性及食物竞争[J]. 生态学报, 2010, 30(20): 5544−5554.

    Zhuang Ping, Luo Gang, Zhang Tao, et al. Food comparison among juvenile Acipenser sinensis and other six economic fishes in the Yangtze River Estuary[J]. Acta Ecologica Sinica, 2010, 30(20): 5544−5554.
    [33]
    韩东燕, 薛莹, 纪毓鹏, 等. 胶州湾5虾虎鱼类的营养和空间生态位[J]. 中国水产科学, 2013, 20(1): 148−156. doi: 10.3724/SP.J.1118.2013.00148

    Han Dongyan, Xue Ying, Ji Yupeng, et al. Trophic and spatial niche of five gobiid fishes in Jiaozhou Bay[J]. Journal of Fishery Sciences of China, 2013, 20(1): 148−156. doi: 10.3724/SP.J.1118.2013.00148
    [34]
    Morissette L. Complexity, cost and quality of ecosystem models and their impact on resilience: a comparative analysis, with emphasis on marine mammals and the Gulf of St. Lawrence[D]. Vancouver: University of British Columbia, 2007.
    [35]
    Ulanowicz R E. Growth and Development, Ecosystems Phenomenology[M]. New York: Springer-Verlag, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (101) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return