Citation: | Li Jiejun,Liu Hongna,Wang Xiaojing, et al. The study on the early diagenetic processes in REY-rich sediments in Southeast Pacific Ocean and its indicative significance[J]. Haiyang Xuebao,2024, 46(2):40–51 doi: 10.12284/hyxb2024007 |
[1] |
Elshkaki A. Sustainability of emerging energy and transportation technologies is impacted by the coexistence of minerals in nature[J]. Communications Earth & Environment, 2021, 2(1): 186.
|
[2] |
Hatch G P. Dynamics in the global market for rare earths[J]. Elements, 2012, 8(5): 341−346. doi: 10.2113/gselements.8.5.341
|
[3] |
Chakhmouradian A R, Wall F. Rare earth elements: minerals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333−340. doi: 10.2113/gselements.8.5.333
|
[4] |
Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285−1303. doi: 10.1016/j.gsf.2018.12.005
|
[5] |
Zhou Tiancheng, Shi Xuefa, Huang Mu, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui Basin, eastern South Pacific Ocean: constraints from bulk sediment geochemistry and mineralogical characteristics[J]. Minerals, 2020, 10(12): 1141. doi: 10.3390/min10121141
|
[6] |
Szamałek K, Konopka G, Zglinicki K, et al. New potential source of rare earth elements[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2013, 29(4): 59−76.
|
[7] |
Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535−539. doi: 10.1038/ngeo1185
|
[8] |
石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2/3): 195−208.
Shi Xuefa, Bi Dongjie, Huang Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2/3): 195−208.
|
[9] |
Bi Dongjie, Shi Xuefa, Huang Mu, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318
|
[10] |
Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8(1): 5763. doi: 10.1038/s41598-018-23948-5
|
[11] |
Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich Deep-Sea Mud from Minami-Torishima Area, southeastern Japan[J]. Resource Geology, 2014, 64(1): 47−57. doi: 10.1111/rge.12026
|
[12] |
Labs-Hochstein J, MacFadden B J. Quantification of diagenesis in Cenozoic sharks: elemental and mineralogical changes[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 4921−4932. doi: 10.1016/j.gca.2006.07.009
|
[13] |
Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175−197. doi: 10.1016/0048-9697(86)90239-1
|
[14] |
Ren Jiangbo, Liu Yan, Wang Fenlian, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021, 11(2): 196. doi: 10.3390/min11020196
|
[15] |
Liao Jianlin, Sun Xiaoming, Li Dengfeng, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512: 58−68. doi: 10.1016/j.chemgeo.2019.02.039
|
[16] |
Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 1987, 82(3/4): 280−288.
|
[17] |
Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265−1279. doi: 10.1016/j.gca.2003.09.012
|
[18] |
Liu Hongna, Li Li, Wang Xiaojing, et al. Determination of Rare Earth Elements in pore water samples of marine sediments using an offline preconcentration method[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(4): 553−563. doi: 10.1007/s00244-020-00793-0
|
[19] |
Hatje V, Bruland K W, Flegal A R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1®resin: method development and application in the San Francisco Bay plume[J]. Marine Chemistry, 2014, 160: 34−41. doi: 10.1016/j.marchem.2014.01.006
|
[20] |
Dick H J B, Lin Jian, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405−412. doi: 10.1038/nature02128
|
[21] |
Rouxel O, Shanks III W C, Bach W, et al. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9−10 N[J]. Chemical Geology, 2008, 252(3/4): 214−227.
|
[22] |
Lupton J E, Craig H. Excess 3He in oceanic basalts: evidence for terrestrial primordial helium[J]. Earth and Planetary Science Letters, 1975, 26(2): 133−139. doi: 10.1016/0012-821X(75)90080-1
|
[23] |
Faure V, Speer K. Deep circulation in the eastern South Pacific Ocean[J]. Journal of Marine Research, 2012, 70(5): 748−778. doi: 10.1357/002224012806290714
|
[24] |
周天成, 石学法. 东南太平洋蒂基海盆深海富稀土沉积富集机制[C]//中国稀土学会2021学术年会论文摘要集. 成都: 中国稀土学会, 2021.
Zhou Tiancheng, Shi Xuefa. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean[C]//Abstracts of the Annual Academic Conference of the Chinese Society of Rare Earths. Chengdu: The Chinese Society of Rare Earths, 2021.
|
[25] |
刘洪娜. 东南太平洋富稀土区沉积物−海水界面稀土元素的地球化学特征研究[D]. 青岛: 自然资源部第一海洋研究所, 2021.
Liu Hongna. The geochemical recycling of rare earth elements at sediment-seawater interface in the REY-rich sediments of southeastern Pacific Ocean[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2021.
|
[26] |
王汾连, 何高文, 任江波, 等. 太平洋不同海域深海沉积物的稀土元素地球化学特征对比研究[J]. 岩石学报, 2023, 39(3): 719−730. doi: 10.18654/1000-0569/2023.03.06
Wang Fenlian, He Gaowen, Ren Jiangbo, et al. Comparative study on the geochemical characteristics of rare earth elements in deep-sea sediments from different regions of the Pacific Ocean[J]. Acta Petrologica Sinica, 2023, 39(3): 719−730. doi: 10.18654/1000-0569/2023.03.06
|
[27] |
Zhou Tiancheng, Shi Xuefa, Huang Mu, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330
|
[28] |
Molina-Kescher M, Hathorne E C, Osborne A H, et al. The influence of basaltic islands on the oceanic REE distribution: a case study from the tropical South Pacific[J]. Frontiers in Marine Science, 2018, 5: 50. doi: 10.3389/fmars.2018.00050
|
[29] |
Grenier M, Jeandel C, Lacan F, et al. From the subtropics to the central equatorial Pacific Ocean: neodymium isotopic composition and rare earth element concentration variations[J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 592−618. doi: 10.1029/2012JC008239
|
[30] |
刘洪娜, 李力, 任艺君, 等. 南太平洋富稀土海区海水中的溶解态稀土元素空间分布特征研究[J]. 海洋学报, 2023, 45(1): 1−12.
Liu Hongna, Li Li, Ren Yijun, et al. The spatial distribution characteristics of dissolved rare earth elements in seawater of REY-enriched region in South Pacific Ocean[J]. Haiyang Xuebao, 2023, 45(1): 1−12.
|
[31] |
Wang B S, Lee C P, Ho T Y. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca[J]. Talanta, 2014, 128: 337−344. doi: 10.1016/j.talanta.2014.04.077
|
[32] |
Rousseau T C C, Sonke J E, Chmeleff J, et al. Rare earth element analysis in natural waters by multiple isotope dilution – sector field ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 573−584. doi: 10.1039/c3ja30332b
|
[33] |
Garcia-Solsona E, Jeandel C. Balancing rare earth element distributions in the northwestern Mediterranean Sea[J]. Chemical Geology, 2020, 532: 119372. doi: 10.1016/j.chemgeo.2019.119372
|
[34] |
Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific, 1985.
|
[35] |
任艺君. 长江口低氧区沉积物−海水界面氧化还原敏感元素的响应机制研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.
Ren Yijun. Study on response mechanism of redox sensitive elements at sediment-seawater interface in low oxygen zone of Yangtze River Estuary[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019.
|
[36] |
Wang Xiaojing, Li Li, Liu Jihua, et al. Early diagenesis of redox-sensitive trace metals in the northern Okinawa Trough[J]. Acta Oceanologica Sinica, 2019, 38(12): 14−25. doi: 10.1007/s13131-019-1512-5
|
[37] |
Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273−1293. doi: 10.5194/bg-6-1273-2009
|
[38] |
Homoky W B, Conway T M, John S G, et al. Iron colloids dominate sedimentary supply to the ocean interior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(13): e2016078118.
|
[39] |
Sani R K, Peyton B M, Amonette J E, et al. Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr) oxides[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2639−2648. doi: 10.1016/j.gca.2004.01.005
|
[40] |
Deng Yinan, Ren Jiangbo, Guo Qingjun, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1
|
[41] |
Deng Yinan, Guo Qingjun, Zhu Jiang, et al. Significant contribution of seamounts to the oceanic rare earth elements budget[J]. Gondwana Research, 2022, 112: 71−81. doi: 10.1016/j.gr.2022.09.016
|
[42] |
Abbott A N, Haley B A, McManus J, et al. The sedimentary flux of dissolved rare earth elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186−200. doi: 10.1016/j.gca.2015.01.010
|
[43] |
Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2847−2856. doi: 10.1016/0016-7037(89)90162-2
|
[44] |
Hatje V, Bruland K W, Flegal A R. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record[J]. Environmental Science & Technology, 2016, 50(8): 4159−4168.
|
[45] |
Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143(1/4): 245−255.
|
[46] |
Nozaki Y, Zhang Jing, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329−340.
|
[47] |
De Baar H J W, Bruland K W, Schijf J, et al. Low cerium among the dissolved rare earth elements in the central North Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2018, 236: 5−40. doi: 10.1016/j.gca.2018.03.003
|
[48] |
车宏, 胡邦琦, 丁雪, 等. 西太平洋深海沉积物孔隙水稀土元素地球化学特征及意义[J]. 海洋地质与第四纪地质, 2021, 41(1): 75−86.
Che Hong, Hu Bangqi, Ding Xue, et al. Rare earth element geochemistry characteristics and implications of pore-water from deep sea sediment in Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 75−86.
|
[49] |
Prakash L S, Ray D, Paropkari A L, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: comparative study between hydrogenous and hydrothermal deposits[J]. Chemical Geology, 2012, 312−313: 127−137. doi: 10.1016/j.chemgeo.2012.03.024
|
[50] |
Takebe M. Carriers of rare earth elements in Pacific deep-sea sediments[J]. The Journal of Geology, 2005, 113(2): 201−215. doi: 10.1086/427669
|
[51] |
Liao Jianlin, Chen Jieyun, Sun Xiaoming, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments[J]. Chemical Geology, 2022, 595: 120792. doi: 10.1016/j.chemgeo.2022.120792
|
[52] |
Hsieh Y T, Bridgestock L, Scheuermann P P, et al. Barium isotopes in mid-ocean ridge hydrothermal vent fluids: a source of isotopically heavy Ba to the ocean[J]. Geochimica et Cosmochimica Acta, 2021, 292: 348−363. doi: 10.1016/j.gca.2020.09.037
|
[53] |
Hsieh Y T, Henderson G M. Barium stable isotopes in the global ocean: tracer of Ba inputs and utilization[J]. Earth and Planetary Science Letters, 2017, 473: 269−278. doi: 10.1016/j.jpgl.2017.06.024
|
[54] |
Yasukawa K, Nakamura K, Fujinaga K, et al. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments[J]. Scientific Reports, 2016, 6(1): 29603. doi: 10.1038/srep29603
|
[55] |
Yasukawa K, Liu Hanjie, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25−36. doi: 10.1016/j.jseaes.2014.07.005
|
[56] |
Toyoda K, Tokonami M. Diffusion of rare-earth elements in fish teeth from deep-sea sediments[J]. Nature, 1990, 345(6276): 607−609. doi: 10.1038/345607a0
|
[57] |
孙懿, 石学法, 鄢全树, 等. 中印度洋海盆富稀土沉积地球化学特征及富集机制研究[J]. 海洋学报, 2022, 44(11): 42−62.
Sun Yi, Shi Xuefa, Yan Quanshu, et al. The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin[J]. Haiyang Xuebao, 2022, 44(11): 42−62.
|