Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Xu Tianheng,Zhang Chongliang,Xue Ying, et al. Environmental adaptability and interspecific relationships of demersal fishes in the coastal waters of Shandong in summer explored by HMSC models[J]. Haiyang Xuebao,2023, 45(8):86–95 doi: 10.12284/hyxb2023106
Citation: Xu Tianheng,Zhang Chongliang,Xue Ying, et al. Environmental adaptability and interspecific relationships of demersal fishes in the coastal waters of Shandong in summer explored by HMSC models[J]. Haiyang Xuebao,2023, 45(8):86–95 doi: 10.12284/hyxb2023106

Environmental adaptability and interspecific relationships of demersal fishes in the coastal waters of Shandong in summer explored by HMSC models

doi: 10.12284/hyxb2023106
  • Received Date: 2023-02-03
  • Rev Recd Date: 2023-04-20
  • Available Online: 2023-08-24
  • Publish Date: 2023-08-31
  • Traditional species distribution models rarely incorporate interspecific relationships into the modeling framework, which hinders their predictions of habitat distributions. In recent years, joint species distribution models (JSDMs) have drawn increasing attentions, but their practical applications remain rare in the marine realm. In this study, we used the HMSC (hierarchical modelling of species communities) method to study their relationships between 17 demersal fish species and environmental factors and the interspecific correlation. The model was built on the basis of bottom trawling data collected in the coastal waters of Shandong in summer, 2017, including the environmental data of water depth, bottom water temperature and bottom water salinity. Five variants of HMSC models were developed with respect to the linear or nonlinear relationships between species and the environmental variables and the exists of random effects, and WAIC and other indicators as well as cross-validation were used to evaluate the performances of fitting and prediction of these models. The results showed that the optimal model was the one incorporating nonlinear relationships and random effects (Model 5). The nonlinear models were generally superior to the linear models, and including the interspecific relationships in the model could improve model fitting performances. Temperature was the main factor influencing the distribution of demersal fishes in the coastal waters of Shandong, accounting for 51.4% of the mean explained variance, followed by water depth and random effects, which accounted for 35.7% and 12.8% explained variance, respectively. There were significant linear positive correlations between most demersal fishes and water depth, and significant nonlinear relationships with water temperature. There were significant interspecific correlations among the demersal fishes, which could be roughly divided into three groups according to the sign of the correlations, indicating that the interspecies relationships played an important role in shaping species distributions. This study suggested that the abiotic factors and biotic factors should be integrated in species distribution modeling, and our results might provide a guideline for the prediction of habitat distribution of fishery resources.
  • loading
  • [1]
    Chu C, Mandrak N E, Minns C K. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada[J]. Diversity and Distributions, 2005, 11(4): 299−310. doi: 10.1111/j.1366-9516.2005.00153.x
    [2]
    Xenopoulos M A, Lodge D M, Alcamo J, et al. Scenarios of freshwater fish extinctions from climate change and water withdrawal[J]. Global Change Biology, 2005, 11(10): 1557−1564. doi: 10.1111/j.1365-2486.2005.001008.x
    [3]
    Bond N, Thomson J, Reich P, et al. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia[J]. Marine and Freshwater Research, 2011, 62(9): 1043−1061. doi: 10.1071/MF10286
    [4]
    DeWeber J T, Wagner T. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection[J]. Global Change Biology, 2018, 24(6): 2735−2748. doi: 10.1111/gcb.14101
    [5]
    Harbor C S, Li N Y. Cold spring harbor symposia on quantitative biology[C]//Cold Spring Harb Symp Quant Biol, [S.l: s.n.]: 1979, 43: 1197−1208.
    [6]
    Wisz M S, Pottier J, Kissling W D, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[J]. Biological Reviews, 2013, 88(1): 15−30. doi: 10.1111/j.1469-185X.2012.00235.x
    [7]
    朱媛君, 山丹, 张晓, 等. 揭示群落结构及其环境响应的联合物种分布模型的研究进展[J]. 应用生态学报, 2018, 29(12): 4217−4225.

    Zhu Yuanjun, Shan Dan, Zhang Xiao, et al. Advances in joint species distribution models to reveal community structure and its environmental response[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 4217−4225.
    [8]
    Harris D J. Generating realistic assemblages with a joint species distribution model[J]. Methods in Ecology and Evolution, 2015, 6(4): 465−473. doi: 10.1111/2041-210X.12332
    [9]
    Latimer A M, Banerjee S, Sang H Jr, et al. Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States[J]. Ecology Letters, 2009, 12(2): 144−154. doi: 10.1111/j.1461-0248.2008.01270.x
    [10]
    Clark J S, Bell D M, Kwit M C, et al. Competition-interaction landscapes for the joint response of forests to climate change[J]. Global Change Biology, 2014, 20(6): 1979−1991. doi: 10.1111/gcb.12425
    [11]
    Clark J S, Gelfand A E, Woodall C W, et al. More than the sum of the parts: forest climate response from joint species distribution models[J]. Ecological Applications, 2014, 24(5): 990−999. doi: 10.1890/13-1015.1
    [12]
    Norberg A, Abrego N, Blanchet F G, et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels[J]. Ecological Monographs, 2019, 89(3): e01370.
    [13]
    崔毅, 马绍赛, 李云平, 等. 莱州湾污染及其对渔业资源的影响[J]. 海洋水产研究, 2003, 24(1): 35−41.

    Cui Yi, Ma Shaosai, Li Yunping, et al. Pollution situation in the Laizhou Bay and its effects on fishery resources[J]. Progress in Fishery Sciences, 2003, 24(1): 35−41.
    [14]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the China, Standardization Administration of China. GB/T 12763.6−2007, Specifications for oceanographic survey-Part 6: marine biological survey[S]. Beijing: Standards Press of China, 2007.
    [15]
    Chen Changsheng, Gao Guoping, Zhang Yu, et al. Circulation in the Arctic Ocean: results from a high-resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system[J]. Progress in Oceanography, 2016, 141: 60−80. doi: 10.1016/j.pocean.2015.12.002
    [16]
    林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1): 47−56. doi: 10.11821/xb200201006

    Lin Zhonghui, Mo Xingguo, Li Hongxuan, et al. Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002, 57(1): 47−56. doi: 10.11821/xb200201006
    [17]
    王政权. 地统计学及在生态学中的应用[M]. 北京: 科学出版社, 1999: 1−197.

    Wang Zhengquan. Application of Geostatistics in Ecology[M]. Beijing: Science Press, 1999: 1−197.
    [18]
    Warton D I, Blanchet F G, O’Hara R B, et al. So many variables: joint modeling in community ecology[J]. Trends in Ecology & Evolution, 2015, 30(12): 766−779.
    [19]
    Ovaskainen O, Hottola J, Siitonen J. Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions[J]. Ecology, 2010, 91(9): 2514−2521. doi: 10.1890/10-0173.1
    [20]
    Kissling W D, Dormann C F, Groeneveld J, et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[J]. Journal of Biogeography, 2012, 39(12): 2163−2178. doi: 10.1111/j.1365-2699.2011.02663.x
    [21]
    Pollock L J, Tingley R, Morris W K, et al. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)[J]. Methods in Ecology and Evolution, 2014, 5(5): 397−406. doi: 10.1111/2041-210X.12180
    [22]
    Skrondal A, Rabe-Hesketh S. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models[M]. New York: Chapman and Hall/CRC, 2004.
    [23]
    Ovaskainen O, Abrego N, Halme P, et al. Using latent variable models to identify large networks of species-to-species associations at different spatial scales[J]. Methods in Ecology and Evolution, 2016, 7(5): 549−555. doi: 10.1111/2041-210X.12501
    [24]
    Ovaskainen O, Tikhonov G, Norberg A, et al. How to make more out of community data? A conceptual framework and its implementation as models and software[J]. Ecology Letters, 2017, 20(5): 561−576. doi: 10.1111/ele.12757
    [25]
    Ovaskainen O, Tikhonov G, Dunson D, et al. How are species interactions structured in species-rich communities? A new method for analysing time-series data[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1855): 20170768. doi: 10.1098/rspb.2017.0768
    [26]
    Ovaskainen O, Roy D B, Fox R, et al. Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models[J]. Methods in Ecology and Evolution, 2016, 7(4): 428−436. doi: 10.1111/2041-210X.12502
    [27]
    Beverton R J H, Holt S J. On the Dynamics of Exploited Fish Populations[M]. Dordrecht: Springer Science & Business Media, 2012.
    [28]
    Bozdogan H. Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions[J]. Psychometrika, 1987, 52(3): 345−370. doi: 10.1007/BF02294361
    [29]
    Tikhonov G, Opedal Ø H, Abrego N, et al. Hmsc 3.0: getting started with Hmsc: high-dimensional multivariate models[R]. [S.l: s.n.]: 2019, 1−26.
    [30]
    Hyndman R J, Koehler A B. Another look at measures of forecast accuracy[J]. International Journal of Forecasting, 2006, 22(4): 679−688. doi: 10.1016/j.ijforecast.2006.03.001
    [31]
    Xu Binduo, Zhang Chongliang, Xue Ying, et al. Optimization of sampling effort for a fishery-independent survey with multiple goals[J]. Environmental Monitoring and Assessment, 2015, 187(5): 252. doi: 10.1007/s10661-015-4483-9
    [32]
    成庆泰, 周才武. 山东鱼类志[M]. 济南: 山东科学技术出版社, 1997: 256−257.

    Cheng Qingtai, Zhou Caiwu. The Fishes of Shandong Province[M]. Ji’nan: Shandong Science and Technology Press, 1997: 256−257.
    [33]
    Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models[J]. Ecology Letters, 2005, 8(9): 993−1009. doi: 10.1111/j.1461-0248.2005.00792.x
    [34]
    范永东. 模型选择中的交叉验证方法综述[D]. 太原: 山西大学, 2013.

    Fan Yongdong. A summary of cross-validation in model selection[D]. Taiyuan: Shanxi University, 2013.
    [35]
    Mod H K, Le Roux P C, Guisan A, et al. Biotic interactions boost spatial models of species richness[J]. Ecography, 2015, 38(9): 913−921. doi: 10.1111/ecog.01129
    [36]
    Zhang Chongliang, Xu Binduo, Xue Ying, et al. Evaluating multispecies survey designs using a joint species distribution model[J]. Aquaculture and Fisheries, 2020, 5(3): 156−162. doi: 10.1016/j.aaf.2019.11.002
    [37]
    吴桢, 张崇良, 薛莹, 等. 山东近海底层鱼类资源空间异质性[J]. 海洋学报, 2022, 44(2): 21−28.

    Wu Zhen, Zhang Chongliang, Xue Ying, et al. Spatial heterogeneity of demersal fish in the offshore waters of Shandong[J]. Haiyang Xuebao, 2022, 44(2): 21−28.
    [38]
    张秋华, 程家骅, 徐汉祥, 等. 东海区渔业资源及其可持续利用[M]. 上海: 复旦大学出版社, 2007: 47-59.

    Zhang Qiuhua, Cheng Jiahua, Xu Hanxiang, et al. Fishery Resources and Sustainable Utilization in the East China Sea Region[M]. Shanghai: Fudan University Press, 2007: 47−59.
    [39]
    陈新军. 渔业资源与渔场学[M]. 2版. 北京: 海洋出版社, 2014.

    Chen Xinjun. Fisheries Resources and Fishing Grounds[M]. 2nd ed. Beijing: China Ocean Press, 2014.
    [40]
    朱元鼎, 金鑫波. 中国杜父鱼类的地理分布和区系特征[J]. 海洋与湖沼, 1965, 7(3): 235−252.

    Zhu Yuanding, Jin Xinbo. The geographical distribution and faunal characteristics of cottoid fishes of China[J]. Oceanologia et Limnologia Sinica, 1965, 7(3): 235−252.
    [41]
    毕远溥. 方氏云鳚渔业生物学及其在辽宁沿海的渔业[J]. 水产科学, 2005, 24(9): 27−28.

    Bi Yuanpu. Biology and its fishery of Fang’s blenny Enedrias fangi Wang et Wang in offshore in Liaoning Province[J]. Fisheries Science, 2005, 24(9): 27−28.
    [42]
    薛莹, 徐宾铎, 高天翔, 等. 北黄海秋季黄鮟鱇摄食习性的初步研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(9): 39−44.

    Xue Ying, Xu Binduo, Gao Tianxiang, et al. Preliminary study on the feeding Habit of Lophius litulon during autumn in the North Yellow Sea[J]. Periodical of Ocean University of China, 2010, 40(9): 39−44.
    [43]
    纪东平, 卞晓东, 宋娜, 等. 荣成俚岛大泷六线鱼摄食生态研究[J]. 水产学报, 2014, 38(9): 1399−1409.

    Ji Dongping, Bian Xiaodong, Song Na, et al. Feeding ecology of Hexagrammos otakii in Lidao Rongcheng[J]. Journal of Fisheries of China, 2014, 38(9): 1399−1409.
    [44]
    张波, 金显仕, 戴芳群. 黄海中南部细纹狮子鱼的摄食习性及其变化[J]. 水产学报, 2011, 35(8): 1199−1207.

    Zhang Bo, Jin Xianshi, Dai Fangqun. Feeding habits and their variation of seasnail (Liparis tanakae) in the central and southern Yellow Sea[J]. Journal of Fisheries of China, 2011, 35(8): 1199−1207.
    [45]
    张波. 黄海中部高眼鲽的摄食及随体长的变化[J]. 应用生态学报, 2007, 18(8): 1849−1854.

    Zhang Bo. Diet composition and ontogenetic variation in feeding habits of Cleithenes herzensteini in central Yellow Sea[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1849−1854.
    [46]
    金海卫, 薛利建, 朱增军, 等. 东海和黄海南部细条天竺鲷的摄食习性[J]. 海洋渔业, 2012, 34(4): 361−370. doi: 10.3969/j.issn.1004-2490.2012.04.001

    Jin Haiwei, Xue Lijian, Zhu Zengjun, et al. Feeding habits of Apogon lineatus in the East China Sea and southern Yellow Sea[J]. Marine Fisheries, 2012, 34(4): 361−370. doi: 10.3969/j.issn.1004-2490.2012.04.001
    [47]
    邓景耀, 孟田湘, 任胜民. 渤海鱼类食物关系的初步研究[J]. 生态学报, 1986, 6(4): 356−364.

    Deng Jingyao, Meng Tianxiang, Ren Shengmin. Food web of fishes in Bohai Sea[J]. Acta Ecologica Sinica, 1986, 6(4): 356−364.
    [48]
    徐兆礼. 兴化湾和闽江口海域春夏季鱼类区系特征[J]. 生物多样性, 2011, 19(1): 79−84. doi: 10.3724/SP.J.1003.2011.06113

    Xu Zhaoli. Comparison of fish fauna of two different waters (Minjiang Estuary and Xinghua Bay) of the East China Sea during spring and summer[J]. Biodiversity Science, 2011, 19(1): 79−84. doi: 10.3724/SP.J.1003.2011.06113
    [49]
    陈皖, 任晓明, 徐宾铎, 等. 基于稳定同位素研究海州湾短吻红舌鳎的摄食生态[J]. 应用生态学报, 2021, 32(3): 1080−1086.

    Chen Wan, Ren Xiaoming, Xu Binduo, et al. Understanding the feeding ecology of Cynoglossus joyneri in Haizhou Bay based on stable isotope analysis[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1080−1086.
    [50]
    高元新, 隋昊志, 任晓明, 等. 基于胃含物和稳定同位素研究海州湾长蛇鲻的摄食习性[J]. 应用生态学报, 2020, 31(12): 4277−4283. doi: 10.13287/j.1001-9332.202012.038

    Gao Yuanxin, Sui Haozhi, Ren Xiaoming, et al. Feeding habits of Saurida elongata in Haizhou Bay, Shandong, China, based on stomach contents and stable isotope[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4277−4283. doi: 10.13287/j.1001-9332.202012.038
    [51]
    林龙山, 张静, 宋普庆, 等. 东山湾及其邻近海域常见游泳动物[M]. 北京: 海洋出版社, 2013: 12.

    Lin Longshan, Zhang Jing, Song Puqing, et al. Nekton in Dongshan Bay and Adjacent Areas, China[M]. Beijing: China Ocean Press, 2013: 12.
    [52]
    许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2): 557−567.

    Xu Zhonglin, Peng Huanhua, Peng Shouzhang. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015, 35(2): 557−567.
    [53]
    Tikhonov G, Duan L, Abrego N, et al. Computationally efficient joint species distribution modeling of big spatial data[J]. Ecology, 2020, 101(2): e02929.
    [54]
    Peterson A T, Soberón J, Pearson R G, et al. Ecological Niches and Geographic Distributions (MPB-49)[M]. Princeton: Princeton University Press, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (489) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return