Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Li Yibing,Liu Lejun,Zhou Qingjie, et al. Experimental study on the dynamic process and characteristics of slope sediments after breaking of internal solitary waves[J]. Haiyang Xuebao,2022, 44(8):42–50 doi: 10.12284/hyxb2022174
Citation: Li Yibing,Liu Lejun,Zhou Qingjie, et al. Experimental study on the dynamic process and characteristics of slope sediments after breaking of internal solitary waves[J]. Haiyang Xuebao,2022, 44(8):42–50 doi: 10.12284/hyxb2022174

Experimental study on the dynamic process and characteristics of slope sediments after breaking of internal solitary waves

doi: 10.12284/hyxb2022174
  • Received Date: 2021-09-16
  • Rev Recd Date: 2021-12-27
  • Available Online: 2022-06-20
  • Publish Date: 2022-08-15
  • In order to improve the study of the interaction between internal solitary waves and submarine slope sediments, the stage of continued motion on the slope after internal solitary waves fragmentation is focused on in this paper, and conducts physical simulation experiments to analyse the changes in earth pressure and super-pore water pressure in response to the slope to reveal the process of internal wave action. The results show that the sediment particles on the slope are resuspended under the combined action of vortex and seepage caused by the internal solitary waves fragmentation, and the change in slope gradient does not change the dominant dynamic role of the sediment in generating the dynamic response; the amplitude of the internal solitary waves affect the ratio between vortex and seepage, i.e. the vortex is dominant under small amplitude conditions and the seepage is dominant under large amplitude conditions; the fragmented fluid forms a new dynamic role when it rushes out along the slope. The dynamic response of the sediment to the new vorticity is influenced by the slope of the slope. The results of this paper are useful for the study of internal solitary waves resuspension transporting seafloor sediments and modifying seafloor topography.
  • loading
  • [1]
    Chen Chenyuan, Hsu J R C, Chen H H, et al. Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes[J]. Ocean Engineering, 2007, 34(1): 157−170. doi: 10.1016/j.oceaneng.2005.11.019
    [2]
    Helfrich K R. Internal solitary wave breaking and run-up on a uniform slope[J]. Journal of Fluid Mechanics, 1992, 243: 133−154. doi: 10.1017/S0022112092002660
    [3]
    Wang B J, Bogucki D J, Redekopp L G. Internal solitary waves in a structured thermocline with implications for resuspension and the formation of thin particle-laden layers[J]. Journal of Geophysical Research: Oceans, 2001, 106(C5): 9565−9585. doi: 10.1029/2000JC900101
    [4]
    Ribbe J, Holloway P E. A model of suspended sediment transport by internal tides[J]. Continental Shelf Research, 2001, 21(4): 395−422. doi: 10.1016/S0278-4343(00)00081-9
    [5]
    田壮才, 郭秀军, 乔路正, 等. 南海北部海底沉积物临界起动流速空间分布特征分析[J]. 岩石力学与工程学报, 2016, 35(S2): 4287−4294. doi: 10.13722/j.cnki.jrme.2016.0800

    Tian Zhuangcai, Guo Xiujun, Qiao Luzheng, et al. Analysis of spatial distribution characteristics of seabed sediments critical starting velocity in the northern South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4287−4294. doi: 10.13722/j.cnki.jrme.2016.0800
    [6]
    Nakayama K, Shintani T, Kokubo K, et al. Residual currents over a uniform slope due to breaking of internal waves in a two-layer system[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10002.
    [7]
    Smith J M, Larson M, Kraus N C. Longshore current on a barred beach: field measurements and calculation[J]. Journal of Geophysical Research: Oceans, 1993, 98(C12): 22717−22731. doi: 10.1029/93JC02116
    [8]
    Thorpe S A. The generation of alongslope currents by breaking internal waves[J]. Journal of Physical Oceanography, 1999, 29(1): 29−38. doi: 10.1175/1520-0485(1999)029<0029:TGOACB>2.0.CO;2
    [9]
    Southard J B, Cacchione D A. Experiments on bottom sediment movement by breaking internal waves[M]//Swift D J P, Duane B B, Pilkey O H. Pilkey Shelf Sediment Transport: Process and Pattern. Stroudsburg, PN: Dowden, Hutchinson and Ross, 1972.
    [10]
    Jia Yonggang, Tian Zhuangcai, Shi Xuefa, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1): 12137. doi: 10.1038/s41598-019-47886-y
    [11]
    乔路正, 郭秀军, 田壮才, 等. 内孤立波浅化破碎过程斜坡沉积物孔压响应特征实验分析[J]. 海洋学报, 2018, 40(1): 68−76.

    Qiao Luzheng, Guo Xiujun, Tian Zhuangcai, et al. Experimental analysis of pore pressure characteristics of slope sediments by shoaling internal solitary waves[J]. Haiyang Xuebao, 2018, 40(1): 68−76.
    [12]
    方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.

    Fang Xinhua, Du Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005.
    [13]
    杜辉, 魏岗, 张原铭, 等. 内孤立波沿缓坡地形传播特性的实验研究[J]. 物理学报, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704

    Du Hui, Wei Gang, Zhang Yuanming, et al. Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope[J]. Acta Physica Sinica, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [14]
    胡瑞庚, 刘红军, 时伟. 驻波作用下粉土海床累积液化机制分析[J]. 岩土工程学报, 2021, 43(7): 1228−1237.

    Hu Ruigeng, Liu Hongjun, Shi Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228−1237.
    [15]
    Diamessis P J, Jacobs G B. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves[R]. Ithaca: Cornell University, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (465) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return