Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Lu Tianqi,Wu Zhifang,Ren Xiaosa, et al. Comparative study on shallow water depth inversion based on GeoEye-1 and WorldView-2 remote sensing data[J]. Haiyang Xuebao,2022, 44(4):134–142 doi: 10.12284/hyxb2022082
Citation: Lu Tianqi,Wu Zhifang,Ren Xiaosa, et al. Comparative study on shallow water depth inversion based on GeoEye-1 and WorldView-2 remote sensing data[J]. Haiyang Xuebao,2022, 44(4):134–142 doi: 10.12284/hyxb2022082

Comparative study on shallow water depth inversion based on GeoEye-1 and WorldView-2 remote sensing data

doi: 10.12284/hyxb2022082
  • Received Date: 2021-07-16
  • Rev Recd Date: 2021-09-23
  • Publish Date: 2022-04-14
  • Accurate inversion of shallow water depth is essential for marine space management and ecological environment protection. Lingyang Reef of Xisha Islands in the South China Sea is taken as a typical study area. The single-band model, multi-band model and band-ratio model are established based on GeoEye-1 and WorldView-2 high-resolution multi-spectral remote sensing data and measured points. The results show that the correlation of the inversion model established with the participation of green band is generally high, while the multi-band model established by four bands combination has the highest accuracy and the correlation coefficient reaches 0.870 and 0.853, respectively. Comparing with the inversion accuracy of GeoEye-1 and WorldView-2 data in different depth ranges based on the above model, the conclusion is that the inversion errors of the two kinds of data in different depth ranges have the same trend, with the maximum value of the average relative errors occurring in the range of 0−5 m and the minimum value occurring in the range of 20−25 m. In general, the inversion accuracy of WorldView-2 image is higher than that of GeoEye-1 image. This study has a certain reference significance for the inversion of water depth in shallow tropical sea.
  • loading
  • [1]
    Li Jiwei, Knapp D E, Schill S R, et al. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites[J]. Remote Sensing of Environment, 2019, 232: 111302. doi: 10.1016/j.rse.2019.111302
    [2]
    Hsu H J, Huang C Y, Jasinski M, et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: a case study in the South China Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 1−19. doi: 10.1016/j.isprsjprs.2021.05.012
    [3]
    Gao J. Bathymetric mapping by means of remote sensing: methods, accuracy and limitations[J]. Progress in Physical Geography, 2009, 33(1): 103−116. doi: 10.1177/0309133309105657
    [4]
    Jawak S D, Vadlamani S S, Luis A J. A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons[J]. Advances in Remote Sensing, 2015, 4(2): 147−162. doi: 10.4236/ars.2015.42013
    [5]
    Su Haibin, Liu Hongxing, Wu Qiusheng. Prediction of water depth from multispectral satellite imagery—the regression Kriging alternative[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2511−2515. doi: 10.1109/LGRS.2015.2489678
    [6]
    Civco D L, Kennard W C. Satellite remote bathymetry: a new mechanism for modeling[J]. Photogrammetric Engineering and Remote Sensing, 1992, 58(5): 545−549.
    [7]
    Paredes J M, Spero R E. Water depth mapping from passive remote sensing data under a generalized ratio assumption[J]. Applied Optics, 1983, 22(8): 1134−1135. doi: 10.1364/AO.22.001134
    [8]
    Stumpf R P, Holderied K, Sinclair M. Determination of water depth with high-resolution satellite imagery over variable bottom types[J]. Limnology and Oceanography, 2003, 48(1): 547−556.
    [9]
    马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001

    Ma Yi, Zhang Jie, Zhang Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001
    [10]
    Cheng Jie, Ma Yi, Zhang Jingyu. Water-depth-zoning inversion based on the relationship between two-band radiance data and the depth-invariant index[J]. Regional Studies in Marine Science, 2021, 44: 101790. doi: 10.1016/j.rsma.2021.101790
    [11]
    Liceaga-Correa M A, Euan-Avila J I. Assessment of coral reef bathymetric mapping using visible Landsat Thematic Mapper data[J]. International Journal of Remote Sensing, 2002, 23(1): 3−14. doi: 10.1080/01431160010008573
    [12]
    Lu Tianqi, Chen Shengbo, Tu Yuan, et al. Comparative study on coastal depth inversion based on multi-source remote sensing data[J]. Chinese Geographical Science, 2019, 29(2): 192−201. doi: 10.1007/s11769-018-1013-z
    [13]
    Liu Yongming, Tang Danling, Deng Ruru, et al. An adaptive blended algorithm approach for deriving bathymetry from multispectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 801−817.
    [14]
    聂荣娟. 基于Worldview3数据的浅海水深反演研究[J]. 北京测绘, 2019, 33(9): 1081−1086.

    Nie Rongjuan. Deep seawater inversion based on Worldview3 data[J]. Beijing Surveying and Mapping, 2019, 33(9): 1081−1086.
    [15]
    王燕红, 陈义兰, 周兴华, 等. 基于多项式回归模型的岛礁遥感浅海水深反演[J]. 海洋学报, 2018, 40(3): 121−128.

    Wang Yanhong, Chen Yilan, Zhou Xinghua, et al. Research on reef bathymetry using remote sensing based on polynomial regression model[J]. Haiyang Xuebao, 2018, 40(3): 121−128.
    [16]
    韩中含, 徐白山, 杨成林, 等. 基于Planet多光谱影像的南海岛礁水深反演研究[J]. 测绘与空间地理信息, 2020, 43(12): 139−142,146. doi: 10.3969/j.issn.1672-5867.2020.12.039

    Han Zhonghan, Xu Baishan, Yang Chenglin, et al. Research on reef depth retrieval of South China Sea island based on Planet multispectral image[J]. Geomatics & Spatial Information Technology, 2020, 43(12): 139−142,146. doi: 10.3969/j.issn.1672-5867.2020.12.039
    [17]
    Casal G, Hedley J D, Monteys X, et al. Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data[J]. Estuarine, Coastal and Shelf Science, 2020, 241: 106814. doi: 10.1016/j.ecss.2020.106814
    [18]
    陈本清, 杨燕明, 罗凯. 基于高分一号卫星多光谱数据的岛礁周边浅海水深遥感反演[J]. 热带海洋学报, 2017, 36(2): 70−78.

    Chen Benqing, Yang Yanming, Luo Kai. Retrieval of island shallow water depth from the GaoFen-1 multi-spectral imagery[J]. Journal of Tropical Oceanography, 2017, 36(2): 70−78.
    [19]
    Xia Haoyang, Li Xiaorun, Zhang Huaguo, et al. A bathymetry mapping approach combining log-ratio and semianalytical models using four-band multispectral imagery without ground data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2695−2709. doi: 10.1109/TGRS.2019.2953381
    [20]
    冯英辞, 詹文欢, 姚衍桃, 等. 西沙群岛礁区的地质构造及其活动性分析[J]. 热带海洋学报, 2015, 34(3): 48−53. doi: 10.3969/j.issn.1009-5470.2015.03.006

    Feng Yingci, Zhan Wenhuan, Yao Yantao, et al. Analysis of tectonic movement and activity in the organic reef region around the Xisha Islands[J]. Journal of Tropical Oceanography, 2015, 34(3): 48−53. doi: 10.3969/j.issn.1009-5470.2015.03.006
    [21]
    陈玲, 陈理, 李伟, 等. 基于FLAASH模型的Worldview3大气校正[J]. 国土资源遥感, 2019, 31(4): 26−31.

    Chen Ling, Chen Li, Li Wei, et al. Atmospheric correction of Worldview3 image based on FLAASH model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 26−31.
    [22]
    陆天启, 陈圣波, 郭甜甜, 等. 基于SPOT-6遥感影像的近海水深反演[J]. 海洋学研究, 2016, 34(3): 51−56.

    Lu Tianqi, Chen Shengbo, Guo Tiantian, et al. Offshore bathymetry retrieval from SPOT-6 image[J]. Journal of Marine Sciences, 2016, 34(3): 51−56.
    [23]
    赵洪臣. 基于WorldView-2的多级决策的光学遥感水深反演方法研究[D]. 南京: 南京大学, 2017.

    Zhao Hongchen. Water depth inversion method of optical remote sensing using multilevel decision-making scheme based on WorldView-2[D]. Nanjing: Nanjing University, 2017.
    [24]
    潘昀, 程永舟, 李青峰, 等. 破碎波作用下沙坝附近悬浮泥沙浓度试验研究[J]. 人民长江, 2013, 44(21): 71−75. doi: 10.3969/j.issn.1001-4179.2013.21.019

    Pan Yun, Cheng Yongzhou, Li Qingfeng, et al. Experimental study on suspended sediment concentration near sand bars under action of breaking waves[J]. Yangtze River, 2013, 44(21): 71−75. doi: 10.3969/j.issn.1001-4179.2013.21.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (534) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return