Citation: | Feng Xi,Liu Qiyan,Xu Qingyun, et al. Drift of weakly inertial plastic blocks under wave action of finite-water-depth[J]. Haiyang Xuebao,2024, 46(4):1–12 doi: 10.12284/hyxb2024009 |
[1] |
刘璇, 孙鑫, 朱宏楠, 等. 我国近海漂浮垃圾污染现状及应对建议[J]. 环境卫生工程, 2021, 29(5): 23−29.
Liu Xuan, Sun Xin, Zhu Hongnan, et al. Pollution status and treatment policies of the offshore floating garbage in China[J]. Environmental Sanitation Engineering, 2021, 29(5): 23−29.
|
[2] |
Ostle C, Thompson R C, Broughton D, et al. The rise in ocean plastics evidenced from a 60-year time series[J]. Nature Communications, 2019, 10(1): 1622. doi: 10.1038/s41467-019-09506-1
|
[3] |
Van Sebille E, Aliani S, Law K L, et al. The physical oceanography of the transport of floating marine debris[J]. Environmental Research Letters, 2020, 15(2): 023003. doi: 10.1088/1748-9326/ab6d7d
|
[4] |
罗龙娟, 李桂娇, 刘树函. 大湾区典型海域海洋垃圾来源研究及防治建议[J]. 环境影响评价, 2022, 44(5): 91−96.
Luo Longjuan, Li Guijiao, Liu Shuhan. Study on the source of marine debris in typical sea area of the Greater Bay Area and its prevention and control suggestions[J]. Environmental Impact Assessment, 2022, 44(5): 91−96.
|
[5] |
房瑞, 段志勇, 刘在智, 等. 海洋垃圾治理技术综述[J]. 综合智慧能源, 2023, 45(5): 70−79.
Fang Rui, Duan Zhiyong, Liu Zaizhi, et al. Review on marine litter treatment technologies[J]. Integrated Intelligent Energy, 2023, 45(5): 70−79.
|
[6] |
殷燕, 屈优优, 项海芳, 等. 2020−2022年临海市近岸海域海洋垃圾分布特征研究[J]. 环境生态学, 2023, 5(7): 63−70.
Yin Yan, Qu Youyou, Xiang Haifang et al. Study on distribution characteristics of marine debris in Linhai coastal waters from 2020 to 2022[J]. Environmental Ecology, 2023, 5(7): 63−70.
|
[7] |
Elipot S, Lumpkin R, Perez R C, et al. A global surface drifter data set at hourly resolution[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 2937−2966. doi: 10.1002/2016JC011716
|
[8] |
Liang J H, Wan X, Rose K A, et al. Horizontal dispersion of buoyant materials in the ocean surface boundary layer[J]. Journal of Physical Oceanography, 2018, 48(9): 2103−2125. doi: 10.1175/JPO-D-18-0020.1
|
[9] |
Kukulka T, Veron F. Lagrangian investigation of wave-driven turbulence in the ocean surface boundary layer[J]. Journal of Physical Oceanography, 2019, 49(2): 409−429. doi: 10.1175/JPO-D-18-0081.1
|
[10] |
Lentz S J, Fewings M R. The wind-and wave-driven inner-shelf circulation[J]. Annual Review of Marine Science, 2012, 4(1): 317−343. doi: 10.1146/annurev-marine-120709-142745
|
[11] |
Elgar S, Guza R T. Shoaling gravity waves: comparisons between field observations, linear theory, and a nonlinear model[J]. Journal of Fluid Mechanics, 1985, 158: 47−70. doi: 10.1017/S0022112085002543
|
[12] |
Stokes G G. On the Theory of Oscillatory Waves[M]. Cambridge: Cambridge University Press, 2009: 411−455.
|
[13] |
Deike L, Pizzo N, Melville W K. Lagrangian transport by breaking surface waves[J]. Journal of Fluid Mechanics, 2017, 829: 364−391. doi: 10.1017/jfm.2017.548
|
[14] |
Pizzo N, Melville W K, Deike L. Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface[J]. Journal of Physical Oceanography, 2019, 49(4): 983−992. doi: 10.1175/JPO-D-18-0227.1
|
[15] |
Pasternak G, Zviely D, Ariel A, et al. Message in a bottle–the story of floating plastic in the eastern Mediterranean sea[J]. Waste Management, 2018, 77: 67−77. doi: 10.1016/j.wasman.2018.04.034
|
[16] |
Isobe A, Kubo K, Tamura Y, et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters[J]. Marine Pollution Bulletin, 2014, 89(1/2): 324−330.
|
[17] |
Kataoka T, Hinata H. Evaluation of beach cleanup effects using linear system analysis[J]. Marine Pollution Bulletin, 2015, 91(1): 73−81. doi: 10.1016/j.marpolbul.2014.12.026
|
[18] |
Schulz M, Matthies M. Artificial neural networks for modeling time series of beach litter in the southern North Sea[J]. Marine Environmental Research, 2014, 98: 14−20. doi: 10.1016/j.marenvres.2014.03.014
|
[19] |
Granado I, Basurko O C, Rubio A, et al. Beach litter forecasting on the south-eastern coast of the Bay of Biscay: a bayesian networks approach[J]. Continental Shelf Research, 2019, 180: 14−23. doi: 10.1016/j.csr.2019.04.016
|
[20] |
Santamaria F, Boffetta G, Afonso M M, et al. Stokes drift for inertial particles transported by water waves[J]. Europhysics Letters, 2013, 102(1): 14003. doi: 10.1209/0295-5075/102/14003
|
[21] |
DiBenedetto M H, Koseff J R, Ouellette N T. Orientation dynamics of nonspherical particles under surface gravitywaves[J]. Physical Review Fluids, 2019, 4(3): 034301. doi: 10.1103/PhysRevFluids.4.034301
|
[22] |
Alsina J M, Jongedijk C E, Van Sebille E. Laboratory measurements of the wave-induced motion of plastic particles: influence of wave period, plastic size and plastic density[J]. Journal of Geophysical Research: Oceans, 2020, 125(12): e2020JC016294. doi: 10.1029/2020JC016294
|
[23] |
Ryan P G. Does size and buoyancy affect the long-distance transport of floating debris?[J]. Environmental Research Letters, 2015, 10(8): 084019. doi: 10.1088/1748-9326/10/8/084019
|
[24] |
Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO series in 2021[J/OL]. arxiv: 2107.08430, 2021. http://arxiv.org/abs/2107.08430.
|
[25] |
Monismith S G, Cowen E A, Nepf H M, et al. Laboratory observations of mean flows under surface gravity waves[J]. Journal of Fluid Mechanics, 2007, 573: 131−147. doi: 10.1017/S0022112006003594
|
[26] |
Paprota M, Sulisz W, Reda A. Experimental study of wave-induced mass transport[J]. Journal of Hydraulic Research, 2016, 54(4): 423−434. doi: 10.1080/00221686.2016.1168490
|
[27] |
Grue J, Kolaas J. Experimental particle paths and drift velocity in steep waves at finite water depth[J]. Journal of Fluid Mechanics, 2017, 810: R1. doi: 10.1017/jfm.2016.726
|
[28] |
Huang Guoxing, Law A W K, Huang Zhenhua. Wave-induced drift of small floating objects in regular waves[J]. Ocean Engineering, 2011, 38(4): 712−718. doi: 10.1016/j.oceaneng.2010.12.015
|
[29] |
Calvert R, McAllister M L, Whittaker C, et al. A mechanism for the increased wave-induced drift of floating marine litter[J]. Journal of Fluid Mechanics, 2021, 915: A73. doi: 10.1017/jfm.2021.72
|