Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
Jiang Xuejiao,Wang Kunshan,Dong Zhi, et al. Sea ice variations in the northern Okhotsk Sea shelf since the Last Glacial Maximum[J]. Haiyang Xuebao,2023, 45(5):1–13 doi: 10.12284/hyxb2023074
Citation: Jiang Xuejiao,Wang Kunshan,Dong Zhi, et al. Sea ice variations in the northern Okhotsk Sea shelf since the Last Glacial Maximum[J]. Haiyang Xuebao,2023, 45(5):1–13 doi: 10.12284/hyxb2023074

Sea ice variations in the northern Okhotsk Sea shelf since the Last Glacial Maximum

doi: 10.12284/hyxb2023074
  • Received Date: 2022-07-01
  • Rev Recd Date: 2022-09-15
  • Available Online: 2023-06-19
  • Publish Date: 2023-05-01
  • Here we examine the history of sea ice activity recorded in the Core LV87-54-1 recovered from the northern Okhotsk Sea shelf using high-resolution grain-size analyses. We extracted 3 end members and use EM3 as the sea-ice proxy, using the program AnalySize to conduct end members analyses on the data. According to EM3 results, active sea ice was persistently predominant in the northern Okhotsk Sea shelf since the Last Glacial Maximum. The EM3 content was high and the sea ice activity was intense during the Last Glacial Maximum and Heinrich Stadial 1. The climate cooling at the middle and high latitudes of the Northern Hemisphere and the negative Arctic Oscillation were the main controlling mechanism for sea ice expansion during glacial periods. And weakened runoff from the Amur caused by decreased East Asian Summer Monsoon would allow more sea ice formation in the Okhotsk Sea. Sea ice formation decreased at the onset of the Bølling-Allerød warm period, and then decreased sharply after a slight peak during the Younger Dryas Event. EM3 levels remained low stably since the Holocene due to: increased local autumn insolation, positive Arctic Oscillation and enhanced East Asian Summer Monsoon suppresses subsequent sea ice formation.
  • loading
  • [1]
    Flanner M G, Shell K M, Barlage M, et al. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience, 2011, 4(3): 151−155. doi: 10.1038/ngeo1062
    [2]
    Goosse H, Zunz V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback[J]. The Cryosphere, 2014, 8(2): 453−470. doi: 10.5194/tc-8-453-2014
    [3]
    Sakamoto T, Ikehara M, Aoki K, et al. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2275−2301.
    [4]
    Sakamoto T, Ikehara M, Uchida M, et al. Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: age model and ice-rafted debris in IMAGES Core MD01-2412[J]. Global and Planetary Change, 2006, 53(1/2): 58−77.
    [5]
    Ohshima K I, Nakanowatari T, Riser S, et al. Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline[J]. Progress in Oceanography, 2014, 126: 71−79. doi: 10.1016/j.pocean.2014.04.020
    [6]
    Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1991, 38(S1): S171−S190.
    [7]
    Yasuda I. The origin of the North Pacific intermediate water[J]. Journal of Geophysical Research:Oceans, 1997, 102(C1): 893−909. doi: 10.1029/96JC02938
    [8]
    Lo L, Belt S T, Lattaud J, et al. Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130, 000 years ago[J]. Earth and Planetary Science Letters, 2018, 488: 36−45. doi: 10.1016/j.jpgl.2018.02.005
    [9]
    Nürnberg D, Tiedemann R. Environmental change in the Sea of Okhotsk during the last 1.1 million years[J]. Paleoceanography, 2004, 19(4): PA4011.
    [10]
    Nürnberg D, Dethleff D, Tiedemann R, et al. Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka-Evidence from ice-rafted debris and planktonic δ18O[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3/4): 191−205.
    [11]
    Vasilenko Y P, Gorbarenko S A, Bosin A A, et al. Millennial mode of variability of sea ice conditions in the Okhotsk Sea during the last glaciation (MIS 4-MIS 2)[J]. Quaternary International, 2017, 459: 187−200. doi: 10.1016/j.quaint.2017.09.039
    [12]
    Vasilenko Y P, Gorbarenko S A, Bosin A A, et al. Orbital-scale changes of sea ice conditions of Sea of Okhotsk during the last glaciation and the Holocene (MIS 4-MIS 1)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533: 109284. doi: 10.1016/j.palaeo.2019.109284
    [13]
    Wang W L, Wang Liangchi. Reconstruction of oceanographic changes based on the diatom records of the central Okhotsk Sea over the last 500000 years[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4): 403−411. doi: 10.3319/TAO.2008.19.4.403(IMAGES)
    [14]
    Gorbarenko S A, Yanchenko E A, Psheneva O Y, et al. Orbital and millennial-scale environmental and hydrological changes of the central Okhotsk Sea over the last 136 kyr inferred from micropaleontological (radiolarian and benthic foraminifera), geochemical and lithological proxies and the mechanisms responsible for them[J]. Quaternary Science Reviews, 2020, 247: 106569. doi: 10.1016/j.quascirev.2020.106569
    [15]
    Kimura N, Wakatsuchi M. Relationship between sea-ice motion and geostrophic wind in the Northern Hemisphere[J]. Geophysical Research Letters, 2000, 27(22): 3735−3738. doi: 10.1029/2000GL011495
    [16]
    Kimura N, Wakatsuchi M. Mechanisms for the variation of sea ice extent in the Northern Hemisphere[J]. Journal of Geophysical Research: Oceans, 2001, 106(C12): 31319−31331. doi: 10.1029/2000JC000739
    [17]
    Ogi M, Tachibana Y. Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge[J]. Geophysical Research Letters, 2006, 33(8): L08709.
    [18]
    Ogi M, Tachibana Y, Nishio F, et al. Does the fresh water supply from the Amur River flowing into the Sea of Okhotsk affect sea ice formation?[J]. Journal of the Meteorological Society of Japan, 2001, 79(1): 123−129.
    [19]
    Gorbarenko S A, Tsoi I B, Astakhov A S, et al. Paleoenvironmental changes in the northern shelf of the Sea of Okhotsk during the Holocene[J]. Stratigraphy and Geological Correlation, 2007, 15(6): 656−671. doi: 10.1134/S0869593807060044
    [20]
    Parkinson C L. The impact of the Siberian high and Aleutian low on the sea-ice cover of the sea of Okhotsk[J]. Annals of Glaciology, 1990, 14: 226−229. doi: 10.3189/S0260305500008636
    [21]
    Ponomarev V, Trusenkova O, Ustinova E, et al. Interannual variations of oceanographic and meteorological characteristics in the Sea of Okhotsk[R]. PICES Scientific Report, 1998: 31−40.
    [22]
    Lisitzin A P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past[M]. Berlin, Heidelberg: Springer, 2002.
    [23]
    Overland J E, Adams J M, Bond N A. Decadal variability of the Aleutian low and its relation to high-latitude circulation[J]. Journal of Climate, 1999, 12(5): 1542−1548. doi: 10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2
    [24]
    Thompson D W J, Wallace J M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1297−1300. doi: 10.1029/98GL00950
    [25]
    Minervin I G, Romanyuk V A, Pishchal’nik V M, et al. Zoning the ice cover of the Sea of Okhotsk and the Sea of Japan[J]. Herald of the Russian Academy of Sciences, 2015, 85(2): 132−139. doi: 10.1134/S1019331615010049
    [26]
    Kimura N, Wakatsuchi M. Processes controlling the advance and retreat of sea ice in the Sea of Okhotsk[J]. Journal of Geophysical Research: Oceans, 1999, 104(C5): 11137−11150. doi: 10.1029/1999JC900004
    [27]
    Kovanen D J, Easterbrook D J. Paleodeviations of radiocarbon marine reservoir values for the northeast Pacific[J]. Geology, 2002, 30(3): 243−246. doi: 10.1130/0091-7613(2002)030<0243:PORMRV>2.0.CO;2
    [28]
    Kuzmin Y V, Burr G S, Gorbunov S V, et al. A tale of two seas: reservoir age correction values (R, ΔR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 460−462.
    [29]
    Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 432−437. doi: 10.1016/j.nimb.2007.01.184
    [30]
    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [31]
    Friedman G M. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies[J]. Journal of Sedimentary Research, 1962, 32(1): 15−25.
    [32]
    孙有斌, 高抒, 李军. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报, 2003, 48(2): 184−187. doi: 10.3321/j.issn:0023-074X.2003.01.021

    Sun Youbin, Gao Shu, Li Jun. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal sea setting[J]. Chinese Science Bulletin, 2003, 48(2): 184−187. doi: 10.3321/j.issn:0023-074X.2003.01.021
    [33]
    Xiang Rong, Yang Zuosheng, Saito Y, et al. East Asia Winter Monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS[J]. Science in China Series D, 2006, 49(6): 604−614. doi: 10.1007/s11430-006-0604-1
    [34]
    Xiao Shangbin, Li Anchun, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2/4): 293−304.
    [35]
    Hu Bangqi, Yang Zuosheng, Zhao Meixun, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10): 1656−1668. doi: 10.1007/s11430-012-4447-7
    [36]
    Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503−549. doi: 10.1007/BF02775085
    [37]
    Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2): 39−62.
    [38]
    Wan Shiming, Li Anchun, Clift P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3/4): 561−582.
    [39]
    Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26(1/2): 230−242.
    [40]
    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494−4506. doi: 10.1002/2015GC006070
    [41]
    Gorbarenko S A, Nürnberg D, Derkachev A N, et al. Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply[J]. Marine Geology, 2002, 183(1/4): 107−129.
    [42]
    Derkachev A N, Nikolaeva N A, Gorbarenko S A, et al. Tephra layers of in the quaternary deposits of the Sea of Okhotsk: distribution, composition, age and volcanic sources[J]. Quaternary International, 2016, 425: 248−272. doi: 10.1016/j.quaint.2016.07.004
    [43]
    Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5718): 67−71. doi: 10.1126/science.1105959
    [44]
    Uematsu M, Wang Zifa, Uno I. Atmospheric input of mineral dust to the western North Pacific region based on direct measurements and a regional chemical transport model[J]. Geophysical Research Letters, 2003, 30(6): 1342.
    [45]
    Seki O, Kawamura K, Nakatsuka T, et al. Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene[J]. Geophysical Research Letters, 2003, 30(1): 1001.
    [46]
    Nakatsuka T, Toda M, Kawamura K, et al. Dissolved and particulate organic carbon in the Sea of Okhotsk: transport from continental shelf to ocean interior[J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09S14.
    [47]
    Yasuda T, Asahara Y, Ichikawa R, et al. Distribution and transport processes of lithogenic material from the Amur River revealed by the Sr and Nd isotope ratios of sediments from the Sea of Okhotsk[J]. Progress in Oceanography, 2014, 126: 155−167. doi: 10.1016/j.pocean.2014.04.015
    [48]
    Braitseva O A, Sulerzhitsky L D, Litasova S N, et al. Radiocarbon dating and tephrochronology in Kamchatka[J]. Radiocarbon, 1993, 35(3): 463−476. doi: 10.1017/S0033822200060495
    [49]
    Seki O, Sakamoto T, Sakai S, et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10): Q10007.
    [50]
    Gorbarenko S A, Artemova A V, Goldberg E L, et al. The response of the Okhotsk Sea environment to the orbital-millennium global climate changes during the Last Glacial Maximum, deglaciation and Holocene[J]. Global and Planetary Change, 2014, 116: 76−90. doi: 10.1016/j.gloplacha.2014.02.002
    [51]
    Cheng Hai, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640−646. doi: 10.1038/nature18591
    [52]
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147−151. doi: 10.1038/nature02805
    [53]
    Mayewski P A, Meeker L D, Twickler M S, et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110, 000-year-long glaciochemical series[J]. Journal of Geophysical Research: Oceans, 1997, 102(C12): 26345−26366. doi: 10.1029/96JC03365
    [54]
    Shakun J D, Clark P U, He Feng, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation[J]. Nature, 2012, 484(7392): 49−54. doi: 10.1038/nature10915
    [55]
    Méheust M, Stein R, Fahl K, et al. Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: new insights from IP25 and $\rm U^{k′}_{37} $ proxy records[J]. Arktos, 2018, 4(1): 1−19.
    [56]
    Harada N, Sato M, Sakamoto T. Freshwater impacts recorded in tetraunsaturated alkenones and alkenone sea surface temperatures from the Okhotsk Sea across millennial-scale cycles[J]. Paleoceanography, 2008, 23(3): PA3201.
    [57]
    Cavalieri D J, Parkinson C L. On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas[J]. Journal of Geophysical Research: Oceans, 1987, 92(C7): 7141−7162. doi: 10.1029/JC092iC07p07141
    [58]
    Ternois Y, Kawamura K, Ohkouchi N, et al. Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr[J]. Geochemical Journal, 2000, 34(4): 283−293. doi: 10.2343/geochemj.34.283
    [59]
    Harada N, Ahagon N, Sakamoto T, et al. Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky[J]. Global and Planetary Change, 2006, 53(1/2): 29−46.
    [60]
    Max L, Riethdorf J R, Tiedemann R, et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15, 000 years[J]. Paleoceanography, 2012, 27(3): PA3213.
    [61]
    Samko E, Glebova S, Petruk V. The influence of atmospheric processes on the water circulation off the west Kamchatka coast[R]. PICES Scientific Report, American Geosciences Institute, 2003: 7−12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (497) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return