Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 3
Feb.  2023
Turn off MathJax
Article Contents
Mao Zhihua,Zhang Xianliang,Liu Jianqiang, et al. Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua[J]. Haiyang Xuebao,2023, 45(3):97–112 doi: 10.12284/hyxb2023040
Citation: Mao Zhihua,Zhang Xianliang,Liu Jianqiang, et al. Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua[J]. Haiyang Xuebao,2023, 45(3):97–112 doi: 10.12284/hyxb2023040

Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua

doi: 10.12284/hyxb2023040
  • Received Date: 2021-04-17
  • Rev Recd Date: 2022-10-10
  • Publish Date: 2023-03-01
  • The sea surface temperature (SST) products, obtained from the Chinese Ocean Color and Temperature Scanner (COCTS) on the two haiyang satellites (HY1C and HY1D), play an important role in oceanic and atmospheric researches. It is important to know whether they are consistent with products from other satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. The data quality of SST global images from COCTS on HY1C/1D is evaluated by the average bias, absolute difference, root mean square error, and correlation coefficient based on in-situ SST measurements and the MODIS products. The results show that the spatial patterns of the daily and monthly global SST of HY1C/1D are similar to those of Terra/Aqua. The average bias, absolute difference, root mean square error and correlation coefficient of the global daily SST/HY1C products at daytime, based on the SST values of Terra on June 2020, are 0.04℃, 0.60℃, 0.78℃ and 0.98, respectively, and that of the nighttime products are −0.16℃, 0.78℃, 0.95℃ and 0.86, respectively. Similarly, the values of the daytime SST products of HY1D comparing with the SST of Aqua on June 2020 are 0.02℃, 0.59℃, 0.79℃ and 0.98, and that of the nighttime products are −0.09℃, 0.61℃, 0.82℃ and 0.96, respectively. The evaluation on other seasons indicates that the SST products from COCTS are very stable. However, the data quality control scheme and inhomogeneity correction still need to be developed to improve the performance of SST products of HY1C/1D. As a whole, the SST products of HY1C/1D can be used in some applications, similar to the Terra/Aqua products.
  • loading
  • [1]
    Minnett P J, Evans R H, Kearns E J, et al. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS)[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Toronto, ON, Canada: IEEE, 2002.
    [2]
    Banzon V, Smith T M, Chin T M, et al. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies[J]. Earth System Science Data, 2016, 8(1): 165−176. doi: 10.5194/essd-8-165-2016
    [3]
    Saunders P M. Aerial measurement of sea surface temperature in the infrared[J]. Journal of Geophysical Research, 1967, 72(16): 4109−4117. doi: 10.1029/JZ072i016p04109
    [4]
    魏寒艳, 崔生成, 杨世植, 等. 基于MODIS数据的海表温度反演[J]. 大气与环境光学学报, 2018, 13(4): 277−284.

    Wei Hanyan, Cui Shengcheng, Yang Shizhi, et al. Sea surface temperature retrieving using MODIS data[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(4): 277−284.
    [5]
    王祥. 基于国产自主卫星的海表温度红外遥感机理与算法研究[D]. 大连: 大连海事大学, 2013.

    Wang Xiang. A study on infrared remote sensing mechanism and algorithms of SST retrieval with autonomic satellite data[D]. Dalian: Dalian Maritime University, 2013.
    [6]
    McMillin L. The split window retrieval algorithm for sea surface temperature derived from satellite measurements[J]. Remote Sensing of Atmospheres and Oceans, 1979: 453−455.
    [7]
    McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587−11601
    [8]
    Emery W J, Yu Yunyue, Wick G A, et al. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation[J]. Journal of Geophysical Research: Oceans, 1994, 99(C3): 5219−5236. doi: 10.1029/93JC03215
    [9]
    Walton C C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data[J]. Journal of Applied Meteorology and Climatology, 1988, 27(2): 115−124. doi: 10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2
    [10]
    Walton C C, Pichel W G, Sapper J F, et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27999−28012. doi: 10.1029/98JC02370
    [11]
    Ye Xiaomin, Liu Jianqiang, Lin Mingsen, et al. Sea surface temperatures derived from COCTS onboard the HY-1C satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1038−1047. doi: 10.1109/JSTARS.2020.3033317
    [12]
    Kilpatrick K A, Podestá G, Walsh S, et al. A decade of sea surface temperature from MODIS[J]. Remote Sensing of Environment, 2015, 165: 27−41. doi: 10.1016/j.rse.2015.04.023
    [13]
    Minnett P J, Brown O B, Evans R H, et al. Sea-surface temperature measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra[C]//Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, USA: IEEE, 2004.
    [14]
    Chin T M, Vazquez-Cuervo J, Armstrong E M. A multi-scale high-resolution analysis of global sea surface temperature[J]. Remote Sensing of Environment, 2017, 200: 154−169. doi: 10.1016/j.rse.2017.07.029
    [15]
    Shi Wei, Wang Menghua. Satellite views of the Bohai Sea, Yellow Sea, and East China Sea[J]. Progress in Oceanography, 2012, 104: 30−45. doi: 10.1016/j.pocean.2012.05.001
    [16]
    Wirasatriya A, Setiawan R Y, Subardjo P. The effect of ENSO on the variability of chlorophyll-a and sea surface temperature in the Maluku Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5513−5518. doi: 10.1109/JSTARS.2017.2745207
    [17]
    Purwandari R N, Mubarrok S, Mandang I. Sea surface temperature variability in the Makassar strait during ENSO (El niño Southern Oscillation) from the Terra-MODIS data sets[J]. Journal of Physics: Conference Series, 2019, 1282: 012052. doi: 10.1088/1742-6596/1282/1/012052
    [18]
    Kuo Y C, Tseng Y H. Impact of ENSO on the South China Sea during ENSO decaying winter-spring modeled by a regional coupled model (a new mesoscale perspective)[J]. Ocean Modelling, 2020, 152: 101655. doi: 10.1016/j.ocemod.2020.101655
    [19]
    李璇, 陈文忠. 基于MODIS卫星遥感数据的西北太平洋初级生产力与环境参数的相关性[J]. 海洋开发与管理, 2020, 37(4): 32−41. doi: 10.3969/j.issn.1005-9857.2020.04.006

    Li Xuan, Chen Wenzhong. The correlation between net primary productivity and environmental parameters of Northwest Pacific based on MODIS satellite remote sensing data[J]. Ocean Development and Management, 2020, 37(4): 32−41. doi: 10.3969/j.issn.1005-9857.2020.04.006
    [20]
    刘建强, 曾韬, 梁超, 等. 海洋一号C卫星在自然灾害监测中的应用[J]. 卫星应用, 2020, 102(6): 26−34. doi: 10.3969/j.issn.1674-9030.2020.06.008

    Liu Jianqiang, Zeng Tao, Liang Chao, et al. Application of HY-1C satellite in natural disaster monitoring[J]. Satellite Application, 2020, 102(6): 26−34. doi: 10.3969/j.issn.1674-9030.2020.06.008
    [21]
    奚萌, 宋清涛, 林明森, 等. 西北太平洋红外辐射计海表温度数据交叉比对分析[J]. 海洋与湖沼, 2017, 48(3): 436−453.

    Xi Meng, Song Qingtao, Lin Mingsen, et al. Comparison in multi-infrared products of sea surface temperature in Northwest Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(3): 436−453.
    [22]
    Hosoda K, Murakami H, Sakaida F, et al. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard Terra and Aqua in the western North Pacific[J]. Journal of Oceanography, 2007, 63(2): 267−280. doi: 10.1007/s10872-007-0027-4
    [23]
    Xu Feng, Ignatov A. In situ SST quality monitor (iQuam)[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(1): 164−180. doi: 10.1175/JTECH-D-13-00121.1
    [24]
    Tu Qianguang, Hao Zengzhou. Validation of sea surface temperature derived from Himawari-8 by JAXA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 448−459. doi: 10.1109/JSTARS.2019.2963773
    [25]
    Mcclain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587−11601. doi: 10.1029/JC090iC06p11587
    [26]
    Song Dan, Duan Zhigang, Zhai Fangguo, et al. Surface diurnal warming in the East China Sea derived from satellite remote sensing[J]. Journal of Oceanology and Limnology, 2018, 36(3): 620−629. doi: 10.1007/s00343-018-7035-7
    [27]
    Stuart-Menteth A C. A global study of diurnal warming using satellite-derived sea surface temperature[J]. Journal of Geophysical Research: Oceans, 2003, 108(C5): 3155. doi: 10.1029/2002JC001534
    [28]
    He Shuangyan, Huang Daji, Zeng Dingyong. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China[J]. Journal of Marine Systems, 2016, 154: 93−102. doi: 10.1016/j.jmarsys.2015.02.009
    [29]
    Putra R D, Suhana M P, Kurniawn D, et al. Detection of reef scale thermal stress with Aqua and Terra MODIS satellite for coral bleaching phenomena[J]. AIP Conference Proceedings, 2019, 2094: 020024.
    [30]
    Huang Zhi, Feng Ming. Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data[J]. Remote Sensing of Environment, 2015, 166: 214−232. doi: 10.1016/j.rse.2015.05.028
    [31]
    刘伊格, 苗俊伟, 孙伟富, 等. VIIRS与MODIS海表面温度产品观测能力对比分析[J]. 海洋科学进展, 2019, 37(3): 417−431. doi: 10.3969/j.issn.1671-6647.2019.03.006

    Liu Yige, Miao Junwei, Sun Weifu, et al. Observational capabilities comparison of sea surface temperature by VIIRS and MODIS[J]. Advances in Marine Science, 2019, 37(3): 417−431. doi: 10.3969/j.issn.1671-6647.2019.03.006
    [32]
    刘建阳, 毛志华, 陶邦一, 等. HY-1C/D卫星中国海洋水色水温扫描仪几何定位方法[J]. 海洋学报, 2022, 44(5): 47−61.

    Liu Jianyang, Mao Zhihua, Tao Bangyi, et al. Geometric positioning method of HY-1C/D satellite Chinese ocean color and temperature scanner[J]. Haiyang Xuebao, 2022, 44(5): 47−61.
    [33]
    王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验[J]. 应用气象学报, 2020, 31(6): 729−739. doi: 10.11898/1001-7313.20200608

    Wang Sujuan, Cui Peng, Zhang Peng, et al. FY-3C/VIRR sea surface temperature products and quality validation[J]. Journal of Applied Meteorological Science, 2020, 31(6): 729−739. doi: 10.11898/1001-7313.20200608
    [34]
    毛志华, 朱乾坤, 潘德炉. 卫星遥感业务系统海表温度误差控制方法[J]. 海洋学报, 2003, 25(5): 49−57.

    Mao Zhihua, Zhu Qiankun, Pan Delu. A temperature error control technology for an operational satellite application system[J]. Haiyang Xuebao, 2003, 25(5): 49−57.
    [35]
    Wang Minyang, Du Yan, Qiu Bo, et al. Mechanism of seasonal eddy kinetic energy variability in the eastern equatorial Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3240−3252. doi: 10.1002/2017JC012711
    [36]
    Karagali I, Høyer J L. Characterisation and quantification of regional diurnal SST cycles from SEVIRI[J]. Ocean Science, 2014, 10(5): 745−758. doi: 10.5194/os-10-745-2014
    [37]
    王剑, 凌铁军, 韩雪. 中低纬度海表面温度日变化特征分析[J]. 海洋预报, 2017, 34(6): 1−7. doi: 10.11737/j.issn.1003-0239.2017.06.001

    Wang Jian, Ling Tiejun, Han Xue. Diurnal variabilities of sea surface temperature in the low-and mid-latitudes[J]. Marine Forecasts, 2017, 34(6): 1−7. doi: 10.11737/j.issn.1003-0239.2017.06.001
    [38]
    Dickey T, Marra J, Sigurdson D E, et al. Seasonal variability of bio-optical and physical properties in the Arabian Sea: October 1994–October 1995[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45(10/11): 2001−2025.
    [39]
    Mauzole Y L. Objective delineation of persistent SST fronts based on global satellite observations[J]. Remote Sensing of Environment, 2022, 269: 112798. doi: 10.1016/j.rse.2021.112798
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(10)

    Article views (72) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return