Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Tang Wei,Wang Xuefang,Wu Feng, et al. Simulation of spatio-temporal distribution of swordfish habitat in the western Indian Ocean based on maximum entropy model[J]. Haiyang Xuebao,2022, 44(10):100–108 doi: 10.12284/hyxb2022180
Citation: Tang Wei,Wang Xuefang,Wu Feng, et al. Simulation of spatio-temporal distribution of swordfish habitat in the western Indian Ocean based on maximum entropy model[J]. Haiyang Xuebao,2022, 44(10):100–108 doi: 10.12284/hyxb2022180

Simulation of spatio-temporal distribution of swordfish habitat in the western Indian Ocean based on maximum entropy model

doi: 10.12284/hyxb2022180
  • Received Date: 2022-04-14
  • Rev Recd Date: 2022-06-07
  • Available Online: 2022-07-01
  • Publish Date: 2022-10-01
  • Swordfish (Xiphias gladius) is a highly migratory fish whose habitat suitability is significantly influenced by the marine environment, and the prediction of its habitat using changes in the marine environment is of great scientific importance. In this study, we used the catch information of swordfish in the Chinese Indian Ocean Longline Fisheries Observer Data from 2017 to 2019 as species occurrence data, combined with the environmental data in the western Indian Ocean waters, including sea surface temperature (SST), sea surface height (SSH), chlorophyll a (Chl a) concentration, mixed layer depth (MLD), and sea surface salinity (SSS), the habitat suitability distribution of swordfish in the western Indian Ocean is simulated by using a maximum entropy model (MaxEnt). Model results show that: (1) the model has very high accuracy in simulating the habitat suitability distribution of swordfish in the western Indian Ocean, with AUC values greater than 0.9 in all seasons, and can be used to simulate the potential habitat suitability distribution of swordfish; (2) changes in the distribution of suitable habitat for swordfish in the study area are generally consistent with changes in the actual operational location, and the distribution of areas with high habitat suitability for swordfish is more concentrated in both the dry and rainy seasons, but the distribution range is greater in the wet season than in the dry season; (3) SST, SSS and MLD are important environmental factors affecting the habitat suitability distribution of swordfish in the western Indian Ocean. The optimum ranges of SST, SSS and MLD in the dry and rainy seasons are 25.8−31.6°C, 34.4−35.9 and 0.1−24.9 m, and 25.6−30.5°C, 34.8−36.4 and 13.1−54.1 m, respectively. The results of the study provide essential reference information for the sustainable use and scientific management of swordfish populations in the western Indian Ocean.
  • loading
  • [1]
    Ichinokawa M, Brodziak J. Using adaptive area stratification to standardize catch rates with application to North Pacific swordfish (Xiphias gladius)[J]. Fisheries Research, 2010, 106(3): 249−260. doi: 10.1016/j.fishres.2010.08.001
    [2]
    Brinson A A, Alcalá A, Die D J, et al. Contrasting socioeconomic indicators for two fisheries that target Atlantic billfish: southeast Florida recreational charter boats and Venezuelan artisanal gill-netters[J]. Bulletin of Marine Science, 2006, 79(3): 635−645.
    [3]
    Myers R A, Worm B. Extinction, survival or recovery of large predatory fishes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1453): 13−20. doi: 10.1098/rstb.2004.1573
    [4]
    Rooker J R, Simms J R, Wells R J D, et al. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico[J]. PLoS One, 2012, 7(4): e34180. doi: 10.1371/journal.pone.0034180
    [5]
    Sedberry G, Loefer J. Satellite telemetry tracking of swordfish, Xiphias gladius, off the eastern United States[J]. Marine Biology, 2001, 139(2): 355−360. doi: 10.1007/s002270100593
    [6]
    Kraus R T, Wells R J D, Rooker J R. Horizontal movements of Atlantic blue marlin (Makaira nigricans) in the Gulf of Mexico[J]. Marine Biology, 2011, 158(3): 699−713. doi: 10.1007/s00227-010-1593-3
    [7]
    Skov H, Humphreys E, Garthe S, et al. Application of habitat suitability modelling to tracking data of marine animals as a means of analyzing their feeding habitats[J]. Ecological Modelling, 2008, 212(3/4): 504−512.
    [8]
    Chang Y J, Sun Chilu, Chen Yong, et al. Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7523−7541. doi: 10.1080/01431161.2012.685980
    [9]
    Romeo T, Consoli P, Punzon A, et al. Swordfish (Xiphias gladius Linnaeus 1758) harpoon fishery: a method of evaluation of swordfish presence in the Strait of Messina (Central Mediterranean Sea)[J]. Journal of Applied Ichthyology, 2010, 26(6): 886−891. doi: 10.1111/j.1439-0426.2010.01522.x
    [10]
    Sculley M L, Brodziak J. Quantifying the distribution of swordfish (Xiphias gladius) density in the Hawaii-based longline fishery[J]. Fisheries Research, 2020, 230: 105638. doi: 10.1016/j.fishres.2020.105638
    [11]
    杨晓龙, 杨超杰, 胡成业, 等. 物种分布模型在海洋潜在生境预测的应用研究进展[J]. 应用生态学报, 2017, 28(6): 2063−2072. doi: 10.13287/j.1001-9332.201706.006

    Yang Xiaolong, Yang Chaojie, Hu Chengye, et al. Application of species distribution models in the prediction of marine potential habitat: a review[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 2063−2072. doi: 10.13287/j.1001-9332.201706.006
    [12]
    解鹏飞, 顾炎斌, 隋伟娜, 等. 物种分布模型在海洋物种潜在分布预测中面临的大数据挑战[J]. 海洋信息, 2019, 34(1): 51−61. doi: 10.19661/j.cnki.mi.2019.01.009

    Xie Pengfei, Gu Yanbin, Sui Weina, et al. Big data challenges for species distribution models in predicting potential distribution of marine species[J]. Marine Information, 2019, 34(1): 51−61. doi: 10.19661/j.cnki.mi.2019.01.009
    [13]
    邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3): 295−302. doi: 10.3724/SP.J.1003.2011.08318

    Xing Dingliang, Hao Zhanqing. The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011, 19(3): 295−302. doi: 10.3724/SP.J.1003.2011.08318
    [14]
    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259.
    [15]
    Phillips S J, Dudík M, Schapire R E. A maximum entropy approach to species distribution modeling[C]//Proceedings of the Twenty-First International Conference on Machine Learning. Banff: ACM, 2004: 83.
    [16]
    Alabia I D, Saitoh S I, Mugo R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific[J]. Fisheries Oceanography, 2015, 24(2): 190−203. doi: 10.1111/fog.12102
    [17]
    Chen Bingyao, Hong Zhe, Hao Xiuqing, et al. Environmental models for predicting habitat of the Indo-Pacific humpback dolphins in Fujian, China[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30(4): 787−793. doi: 10.1002/aqc.3279
    [18]
    Tittensor D P, Baco A R, Brewin P E, et al. Predicting global habitat suitability for stony corals on seamounts[J]. Journal of Biogeography, 2009, 36(6): 1111−1128. doi: 10.1111/j.1365-2699.2008.02062.x
    [19]
    Monk J, Ierodiaconou D, Versace V L, et al. Habitat suitability for marine fishes using presence-only modelling and multibeam sonar[J]. Marine Ecology Progress Series, 2010, 420: 157−174. doi: 10.3354/meps08858
    [20]
    Lévy M, Shankar D, André J M, et al. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms[J]. Journal of Geophysical Research: Oceans, 2007, 112(C12): C12014. doi: 10.1029/2007JC004090
    [21]
    Potier M, Marsac F, Cherel Y, et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[J]. Fisheries Research, 2007, 83(1): 60−72. doi: 10.1016/j.fishres.2006.08.020
    [22]
    Jensen T G. Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model[J]. Geophysical Research Letters, 2001, 28(20): 3967−3970. doi: 10.1029/2001GL013422
    [23]
    Beal L M, Hormann V, Lumpkin R, et al. The response of the surface circulation of the Arabian Sea to monsoonal forcing[J]. Journal of Physical Oceanography, 2013, 43(9): 2008−2022. doi: 10.1175/JPO-D-13-033.1
    [24]
    杜岩, 张涟漪, 张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243−254. doi: 10.11867/j.issn.1001-8166.2019.03.0243

    Du Yan, Zhang Lianyi, Zhang Yuhong. Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes[J]. Advances in Earth Science, 2019, 34(3): 243−254. doi: 10.11867/j.issn.1001-8166.2019.03.0243
    [25]
    Han Weiqing, McCreary Jr J P. Modeling salinity distributions in the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2001, 106(C1): 859−877. doi: 10.1029/2000JC000316
    [26]
    Schott F A, Xie Shangping, McCreary Jr J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47(1): RG1002.
    [27]
    Liu Canran, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-only data[J]. Journal of Biogeography, 2013, 40(4): 778−789. doi: 10.1111/jbi.12058
    [28]
    Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 2006, 29(2): 129−151. doi: 10.1111/j.2006.0906-7590.04596.x
    [29]
    Kozak K H, Graham C H, Wiens J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology & Evolution, 2008, 23(3): 141−148.
    [30]
    Rödder D, Weinsheimer F, Lötters S. Molecules meet macroecology—combining species distribution models and phylogeographic studies[J]. Zootaxa, 2010, 2426(1): 54−60. doi: 10.11646/zootaxa.2426.1.3
    [31]
    Sax D F, Stachowicz J J, Brown J H, et al. Ecological and evolutionary insights from species invasions[J]. Trends in Ecology & Evolution, 2007, 22(9): 465−471.
    [32]
    Busby J R. BIOCLIM—a bioclimate analysis and prediction system[M]//Margules C R, Austin M P. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Australia: CSIRO, 1991.
    [33]
    McCullagh P, Nelder J A. Generalized Linear Models[M]. London: Routledge, 2019.
    [34]
    Hastie T J. Generalized Additive Models[M]. London: Routledge, 2017.
    [35]
    Ripley B D. Pattern Recognition and Neural Networks[M]. Cambridge: Cambridge University Press, 2007.
    [36]
    Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
    [37]
    Dambach J, Rödder D. Applications and future challenges in marine species distribution modeling[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2011, 21(1): 92−100. doi: 10.1002/aqc.1160
    [38]
    Gu Weidong, Swihart R K. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models[J]. Biological Conservation, 2004, 116(2): 195−203. doi: 10.1016/S0006-3207(03)00190-3
    [39]
    MacLeod C D, Mandleberg L, Schweder C, et al. A comparison of approaches for modelling the occurrence of marine animals[J]. Hydrobiologia, 2008, 612(1): 21−32. doi: 10.1007/s10750-008-9491-0
    [40]
    González-Irusta J M, González-Porto M, Sarralde R, et al. Comparing species distribution models: a case study of four deep sea urchin species[J]. Hydrobiologia, 2015, 745(1): 43−57. doi: 10.1007/s10750-014-2090-3
    [41]
    Reiss H, Cunze S, König K, et al. Species distribution modelling of marine benthos: a North Sea case study[J]. Marine Ecology Progress Series, 2011, 442: 71−86. doi: 10.3354/meps09391
    [42]
    Elepathage T S M, Tang Danling, Oey L. The pelagic habitat of swordfish (Xiphias gladius) in the changing environment of the North Indian Ocean[J]. Sustainability, 2019, 11(24): 7070. doi: 10.3390/su11247070
    [43]
    Abascal F J, Mejuto J, Quintans M, et al. Tracking of the broadbill swordfish, Xiphias gladius, in the central and eastern North Atlantic[J]. Fisheries Research, 2015, 162: 20−28. doi: 10.1016/j.fishres.2014.09.011
    [44]
    Palko B J, Beardsley G L, Richards W J. Synopsis of the biology of the swordfish, Xiphias gladius Linnaeus[R]. Washington: U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1981.
    [45]
    Tserpes G, Peristeraki P, Valavanis V D. Distribution of swordfish in the eastern Mediterranean, in relation to environmental factors and the species biology[J]. Hydrobiologia, 2008, 612(1): 241−250. doi: 10.1007/s10750-008-9499-5
    [46]
    Luis A J, Pandey P C. Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scatterometer winds[J]. Remote Sensing of Environment, 2005, 97(2): 231−237. doi: 10.1016/j.rse.2005.04.016
    [47]
    Bigelow K A, Boggs C H, He Xi. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery[J]. Fisheries Oceanography, 1999, 8(3): 178−198. doi: 10.1046/j.1365-2419.1999.00105.x
    [48]
    Longhurst A R. Ecological Geography of the Sea[M]. 2nd ed. Burlington: Academic Press, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (453) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return