Citation: | Ni Yunlin,Gong Qian,Shen Mengjia. Study of wave reflection by the Bragg breakwater with rectangular bars on the permeable seabed[J]. Haiyang Xuebao,2022, 44(9):124–131 doi: 10.12284/hyxb2022103 |
[1] |
Bragg W H, Bragg W L. The reflection of X-rays by crystals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1913, 88(605): 428−438.
|
[2] |
Davies A G. The reflection of wave energy by undulations on the seabed[J]. Dynamics of Atmospheres and Oceans, 1982, 6(4): 207−232. doi: 10.1016/0377-0265(82)90029-X
|
[3] |
Mei C C, Hara T, Naciri M. Note on Bragg scattering of water waves by parallel bars on the seabed[J]. Journal of Fluid Mechanics, 1988, 186: 147−162. doi: 10.1017/S0022112088000084
|
[4] |
Hsu T W, Chang H K, Tsai L H. Bragg reflection of waves by different shapes of artificial bars[J]. China Ocean Engineering, 2002, 16(3): 343−358.
|
[5] |
蔡立宏. 波浪通过系列潜堤之布拉格反射研究[D]. 台南: 台湾成功大学, 2003.
Cai Lihong. Study on Bragg reflection of waves passing through a series of submerged breakwaters[D]. Tainan: Cheng Kung University, 2003.
|
[6] |
Wen C C, Tsai L H. Numerical simulation of Bragg reflection based on linear waves propagation over a series of rectangular seabed[J]. China Ocean Engineering, 2008, 22(1): 71−86.
|
[7] |
江鸣. 波浪通过系列矩形潜堤的数值模拟[D]. 天津: 天津大学, 2012.
Jiang Ming. Numerical simulation of wave propagation over a series of submerged rectangular dikes[D]. Tianjin: Tianjin University, 2012.
|
[8] |
Liu Huanwen, Shi Yunping, Cao Dunqian. Optimization of parabolic bars for maximum Bragg resonant reflection of long waves[J]. Journal of Hydrodynamics, 2015, 27(3): 373−382. doi: 10.1016/S1001-6058(15)60495-4
|
[9] |
Liu Huanwen, Zeng Huidan, Huang Huidong. Bragg resonant reflection of surface waves from deep water to shallow water by a finite array of trapezoidal bars[J]. Applied Ocean Research, 2020, 94: 101976. doi: 10.1016/j.apor.2019.101976
|
[10] |
Liu Huanwen, Luo Heng, Zeng Huidan. Optimal collocation of three kinds of Bragg breakwaters for Bragg resonant reflection by long waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2015, 141(3): 04014039. doi: 10.1061/(ASCE)WW.1943-5460.0000278
|
[11] |
曾慧丹. 全波谱条件下三类布拉格防波堤的最优配置[D]. 南宁: 广西民族大学, 2014.
Zeng Huidan. Optimal collocation of Bragg breakwaters for Bragg resonance by water waves in the whole wave range[D]. Nanning: Guangxi University for Nationalities, 2014.
|
[12] |
曾慧丹, 刘焕文, 唐国吉. 矩形Bragg防波堤引起线性长波共振反射的最优配置[C]//第十六届中国海洋(岸)工程学术讨论会论文集 . 北京: 海洋出版社, 2013: 663-672.
Zeng Huidan, Liu Huanwen, Tang Guoji. Optimal configuration of linear long waves resonance reflection induced by rectangular Bragg breakwater[C]//Proceedings of the Sixteenth Chinese Symposium on Marine (Coastal) Engineering (Volume I). Beijing: China Ocean Press, 2013: 663−672.
|
[13] |
Dean R G, Dalrymple R A. Water Wave Mechanics for Engineers and Scientists[M]. Singapore: World Scientific, 1984: 353.
|
[14] |
Mendez F J, Losada I J. A perturbation method to solve dispersion equations for water waves over dissipative media[J]. Coastal Engineering, 2004, 51(1): 81−89. doi: 10.1016/j.coastaleng.2003.12.007
|
[15] |
Ni Yunlin, Teng Bin. Bragg resonant reflection of water waves by a Bragg breakwater with porous rectangular bars on a sloping permeable seabed[J]. Ocean Engineering, 2021, 235: 109333. doi: 10.1016/j.oceaneng.2021.109333
|
[16] |
Ni Yunlin, Teng Bin. Bragg resonant reflection of water waves by a Bragg breakwater with porous trapezoidal bars on a sloping permeable seabed[J]. Applied Ocean Research, 2021, 114: 102770. doi: 10.1016/j.apor.2021.102770
|
[17] |
Zeng Huidan, Qin Bin, Zhang Jinghua. Optimal collocation of Bragg breakwaters with rectangular bars on sloping seabed for Bragg resonant reflection by long waves[J]. Ocean Engineering, 2017, 130: 156−165. doi: 10.1016/j.oceaneng.2016.11.066
|
[18] |
Savage R P, Fairchild J C. Laboratory study of wave energy losses by bottom friction and percolation[J]. Beach Erosion Board, 1953, 31: 1−25.
|
[19] |
Mizutani N, Mostafa A M. Dynamic interaction of nonlinear waves and a seawall over sand seabed[J]. International Journal of Offshore and Polar Engineering, 1998, 8(1): 30−38.
|
[20] |
周李杰. 烟台港抛石防波堤波浪动力响应的数值分析[D]. 武汉: 武汉理工大学, 2018.
Zhou Lijie. Numerical analysis of wave-induced dynamics of a rubble mould breakwater at Yantai Port[D]. Wuhan: Wuhan University of Technology, 2018.
|
[21] |
任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491−497.
Ren Yubin, Wang Yin, Yang Qing. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491−497.
|
[22] |
倪云林, 章哲文, 唐志波, 等. 波浪在沙质海床上传播波长变化[J]. 水利水运工程学报, 2017(3): 51−55.
Ni Yunlin, Zhang Zhewen, Tang Zhibo, et al. Changes in wavelength of wave propagation over a sandy seabed[J]. Hydro-Science and Engineering, 2017(3): 51−55.
|
[23] |
王忠涛, 栾茂田, 郑东生. 多孔介质海床对波浪传播影响理论分析[J]. 大连理工大学学报, 2009, 49(6): 891−896. doi: 10.7511/dllgxb200906020
Wang Zhongtao, Luan Maotian, Zheng Dongsheng. Dynamic analysis for effects of porous seabed on wave propagation[J]. Journal of Dalian University of Technology, 2009, 49(6): 891−896. doi: 10.7511/dllgxb200906020
|
[24] |
Guazzelli E, Rey V, Belzons M. Higher-order Bragg reflection of gravity surface waves by periodic beds[J]. Journal of Fluid Mechanics, 1992, 245: 301−317. doi: 10.1017/S0022112092000478
|
[25] |
Liu Huanwen, Yang Jing, Lin Pengzhi. An analytic solution to the modified mild-slope equation for wave propagation over one-dimensional piecewise smooth topographies[J]. Wave Motion, 2012, 49(3): 445−460. doi: 10.1016/j.wavemoti.2012.01.002
|
[26] |
Liu Huanwen, Li Xiaofeng, Lin Pengzhi. Analytical study of Bragg resonance by singly periodic sinusoidal ripples based on the modified mild-slope equation[J]. Coastal Engineering, 2019, 150: 121−134. doi: 10.1016/j.coastaleng.2019.04.015
|