Citation: | Deng Fengfei,Zhang Xu. Background climate dependence of Atlantic meridional overturning circulation responding to precessional change[J]. Haiyang Xuebao,2022, 44(9):13–22 doi: 10.12284/hyxb2022099 |
[1] |
Johns W E, Baringer M O, Beal L M, et al. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N[J]. Journal of Climate, 2011, 24(10): 2429−2449. doi: 10.1175/2010JCLI3997.1
|
[2] |
李昕容, 杨海军, 王宇星. 大西洋热盐环流减弱对热带太平洋气候平均态及年际变率的影响[J]. 北京大学学报(自然科学版), 2014, 50(2): 242−250.
Li Xinrong, Yang Haijun, Wang Yuxing. Influence of a weakened Atlantic thermohaline circulation on tropical Pacific climate mean state and ENSO variability[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2): 242−250.
|
[3] |
周天军, 张学洪, 王绍武. 大洋温盐环流与气候变率的关系[J]. 科学通报, 2000, 45(11): 1052−1056. doi: 10.1007/BF02884990
Zhou Tianjun, Zhang Xuehong, Wang Shaowu. The relationship between the thermohaline circulation and climate variability[J]. Chinese Science Bulletin, 2000, 45(11): 1052−1056. doi: 10.1007/BF02884990
|
[4] |
邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042
Shao Qiuli, Zhao Jinping. On the deep water of the Nordic seas[J]. Advances in Earth Science, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042
|
[5] |
Gong Xun, Zhang Xiangdong, Lohmann G, et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic Ocean circulation[J]. Climate Dynamics, 2015, 45(1/2): 139−150.
|
[6] |
Stommel H. Thermohaline convection with two stable regimes of flow[J]. Tellus, 1961, 13(2): 224−230. doi: 10.3402/tellusa.v13i2.9491
|
[7] |
Rahmstorf S. On the freshwater forcing and transport of the Atlantic thermohaline circulation[J]. Climate Dynamics, 1996, 12(12): 799−811. doi: 10.1007/s003820050144
|
[8] |
Kuhlbrodt T, Griesel A, Montoya M, et al. On the driving processes of the Atlantic meridional overturning circulation[J]. Reviews of Geophysics, 2007, 45(2): RG2001.
|
[9] |
Huang Boyin, Xue Yan, Kumar A, et al. AMOC variations in 1979−2008 simulated by NCEP operational ocean data assimilation system[J]. Climate Dynamics, 2012, 38(3/4): 513−525.
|
[10] |
Milanković M. Canon of Insolation and the Ice-age Problem[M]. Belgrade: Royal Serbian Academy, 1941.
|
[11] |
Zhang Xu, Lohmann G, Knorr G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514): 290−294. doi: 10.1038/nature13592
|
[12] |
Zhang Xu, Knorr G, Lohmann G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7): 518−523. doi: 10.1038/ngeo2974
|
[13] |
Lisiecki L E, Raymo M E, Curry W B. Atlantic overturning responses to Late Pleistocene climate forcings[J]. Nature, 2008, 456(7218): 85−88. doi: 10.1038/nature07425
|
[14] |
Roeckner E, Bäuml G, Bonaventura L, et al. The atmospheric general circulation model ECHAM 5. Part I: model description[R]. Hamburg: Max-Planck-Institute for Meteorology, 2003.
|
[15] |
Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7): L07405.
|
[16] |
Marsland S J, Haak H, Jungclaus J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modelling, 2003, 5(2): 91−127. doi: 10.1016/S1463-5003(02)00015-X
|
[17] |
Knorr G, Butzin M, Micheels A, et al. A warm Miocene climate at low atmospheric CO2 levels[J]. Geophysical Research Letters, 2011, 38(20): L20701.
|
[18] |
Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376−381. doi: 10.1038/ngeo2119
|
[19] |
Stepanek C, Lohmann G. Modelling mid-Pliocene climate with COSMOS[J]. Geoscientific Model Development, 2012, 5(5): 1221−1243. doi: 10.5194/gmd-5-1221-2012
|
[20] |
Wei Wei, Lohmann G, Dima M. Distinct modes of internal variability in the global meridional overturning circulation associated with the southern hemisphere westerly winds[J]. Journal of Physical Oceanography, 2012, 42(5): 785−801. doi: 10.1175/JPO-D-11-038.1
|
[21] |
Wei Wei, Lohmann G. Simulated Atlantic multidecadal oscillation during the Holocene[J]. Journal of Climate, 2012, 25(20): 6989−7002. doi: 10.1175/JCLI-D-11-00667.1
|
[22] |
Abelmann A, Gersonde R, Knorr G, et al. The seasonal sea-ice zone in the glacial southern Ocean as a carbon sink[J]. Nature Communications, 2015, 6: 8136. doi: 10.1038/ncomms9136
|
[23] |
Zhang X, Lohmann G, Knorr G, et al. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation[J]. Climate of the Past, 2013, 9(5): 2319−2333. doi: 10.5194/cp-9-2319-2013
|
[24] |
Gong Xun, Knorr G, Lohmann G, et al. Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states[J]. Geophysical Research Letters, 2013, 40(14): 3698−3704. doi: 10.1002/grl.50701
|
[25] |
Maier E, Zhang X, Abelmann A, et al. North Pacific freshwater events linked to changes in glacial ocean circulation[J]. Nature, 2018, 559(7713): 241−245. doi: 10.1038/s41586-018-0276-y
|
[26] |
Merlis T M, Schneider T, Bordoni S, et al. The tropical precipitation response to orbital precession[J]. Journal of Climate, 2013, 26(6): 2010−2021. doi: 10.1175/JCLI-D-12-00186.1
|
[27] |
Ding Zhaomin, Huang Gang, Liu Fei, et al. Responses of global monsoon and seasonal cycle of precipitation to precession and obliquity forcing[J]. Climate Dynamics, 2021, 56(11/12): 3733−3747.
|
[28] |
Wang Chunzai, Zhang Liping, Lee S K. Response of freshwater flux and sea surface salinity to variability of the Atlantic warm pool[J]. Journal of Climate, 2013, 26(4): 1249−1267. doi: 10.1175/JCLI-D-12-00284.1
|
[29] |
Wu Chihua, Tsai P C. Obliquity-driven changes in East Asian seasonality[J]. Global and Planetary Change, 2020, 189: 103161. doi: 10.1016/j.gloplacha.2020.103161
|