Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Deng Fengfei,Zhang Xu. Background climate dependence of Atlantic meridional overturning circulation responding to precessional change[J]. Haiyang Xuebao,2022, 44(9):13–22 doi: 10.12284/hyxb2022099
Citation: Deng Fengfei,Zhang Xu. Background climate dependence of Atlantic meridional overturning circulation responding to precessional change[J]. Haiyang Xuebao,2022, 44(9):13–22 doi: 10.12284/hyxb2022099

Background climate dependence of Atlantic meridional overturning circulation responding to precessional change

doi: 10.12284/hyxb2022099
  • Received Date: 2021-07-14
  • Rev Recd Date: 2022-03-01
  • Available Online: 2022-04-14
  • Publish Date: 2022-08-29
  • The Atlantic meridional overturning circulation (AMOC) is an important component of the climate system, of which change in the strength can affect meridional heat distribution between the northern and southern hemispheres. Proxy records show that changes in Atlantic Ocean circulation during the Late Pleistocene is associated with precessional cycle, but its physical mechanism remains unclear. Here we use a fully coupled climate model to investigate dynamics associated with AMOC changes in precessional band under glacial-interglacial climate conditions. Our results show that increase in boreal summer insolation can effectively weaken the AMOC during warm interglacial periods, while this weakening effect is reduced under glacial maximum. We further demonstrate that during the warm interglacial period increase in boreal summer insolation leads to sea surface warming and subpolar rainfall increase in North Atlantic, which jointly reduces sea surface density and hence the strength of deep water formation. During the glacial maximum period, climate responses to precessional change is of anti-phase impacts on the AMOC. At the low latitudes, a low pressure anomaly triggered by subtropical warming weakens atmospheric moisture export from the subtropical Atlantic to Pacific, increasing in net precipitation and hence freshening tropical sea surface in the North Atlantic. At the high latitudes, the warming-induced sea ice retreat promotes ocean heat loss via the enlarged ice-free area, and hence tends to strengthen the vertical mixing. The combined effects of low- and high-latitude responses finally leads to a trivial weakening of the AMOC. Overall, our results provide a systematic understanding of governing mechanism for precessionally-induced AMOC change under glacial-interglacial climatic backgrounds, shedding light on our interpretation of precessional periodicity in reconstructed ocean circulation changes during the Pleistocene.
  • loading
  • [1]
    Johns W E, Baringer M O, Beal L M, et al. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N[J]. Journal of Climate, 2011, 24(10): 2429−2449. doi: 10.1175/2010JCLI3997.1
    [2]
    李昕容, 杨海军, 王宇星. 大西洋热盐环流减弱对热带太平洋气候平均态及年际变率的影响[J]. 北京大学学报(自然科学版), 2014, 50(2): 242−250.

    Li Xinrong, Yang Haijun, Wang Yuxing. Influence of a weakened Atlantic thermohaline circulation on tropical Pacific climate mean state and ENSO variability[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2): 242−250.
    [3]
    周天军, 张学洪, 王绍武. 大洋温盐环流与气候变率的关系[J]. 科学通报, 2000, 45(11): 1052−1056. doi: 10.1007/BF02884990

    Zhou Tianjun, Zhang Xuehong, Wang Shaowu. The relationship between the thermohaline circulation and climate variability[J]. Chinese Science Bulletin, 2000, 45(11): 1052−1056. doi: 10.1007/BF02884990
    [4]
    邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042

    Shao Qiuli, Zhao Jinping. On the deep water of the Nordic seas[J]. Advances in Earth Science, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042
    [5]
    Gong Xun, Zhang Xiangdong, Lohmann G, et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic Ocean circulation[J]. Climate Dynamics, 2015, 45(1/2): 139−150.
    [6]
    Stommel H. Thermohaline convection with two stable regimes of flow[J]. Tellus, 1961, 13(2): 224−230. doi: 10.3402/tellusa.v13i2.9491
    [7]
    Rahmstorf S. On the freshwater forcing and transport of the Atlantic thermohaline circulation[J]. Climate Dynamics, 1996, 12(12): 799−811. doi: 10.1007/s003820050144
    [8]
    Kuhlbrodt T, Griesel A, Montoya M, et al. On the driving processes of the Atlantic meridional overturning circulation[J]. Reviews of Geophysics, 2007, 45(2): RG2001.
    [9]
    Huang Boyin, Xue Yan, Kumar A, et al. AMOC variations in 1979−2008 simulated by NCEP operational ocean data assimilation system[J]. Climate Dynamics, 2012, 38(3/4): 513−525.
    [10]
    Milanković M. Canon of Insolation and the Ice-age Problem[M]. Belgrade: Royal Serbian Academy, 1941.
    [11]
    Zhang Xu, Lohmann G, Knorr G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514): 290−294. doi: 10.1038/nature13592
    [12]
    Zhang Xu, Knorr G, Lohmann G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7): 518−523. doi: 10.1038/ngeo2974
    [13]
    Lisiecki L E, Raymo M E, Curry W B. Atlantic overturning responses to Late Pleistocene climate forcings[J]. Nature, 2008, 456(7218): 85−88. doi: 10.1038/nature07425
    [14]
    Roeckner E, Bäuml G, Bonaventura L, et al. The atmospheric general circulation model ECHAM 5. Part I: model description[R]. Hamburg: Max-Planck-Institute for Meteorology, 2003.
    [15]
    Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7): L07405.
    [16]
    Marsland S J, Haak H, Jungclaus J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modelling, 2003, 5(2): 91−127. doi: 10.1016/S1463-5003(02)00015-X
    [17]
    Knorr G, Butzin M, Micheels A, et al. A warm Miocene climate at low atmospheric CO2 levels[J]. Geophysical Research Letters, 2011, 38(20): L20701.
    [18]
    Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376−381. doi: 10.1038/ngeo2119
    [19]
    Stepanek C, Lohmann G. Modelling mid-Pliocene climate with COSMOS[J]. Geoscientific Model Development, 2012, 5(5): 1221−1243. doi: 10.5194/gmd-5-1221-2012
    [20]
    Wei Wei, Lohmann G, Dima M. Distinct modes of internal variability in the global meridional overturning circulation associated with the southern hemisphere westerly winds[J]. Journal of Physical Oceanography, 2012, 42(5): 785−801. doi: 10.1175/JPO-D-11-038.1
    [21]
    Wei Wei, Lohmann G. Simulated Atlantic multidecadal oscillation during the Holocene[J]. Journal of Climate, 2012, 25(20): 6989−7002. doi: 10.1175/JCLI-D-11-00667.1
    [22]
    Abelmann A, Gersonde R, Knorr G, et al. The seasonal sea-ice zone in the glacial southern Ocean as a carbon sink[J]. Nature Communications, 2015, 6: 8136. doi: 10.1038/ncomms9136
    [23]
    Zhang X, Lohmann G, Knorr G, et al. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation[J]. Climate of the Past, 2013, 9(5): 2319−2333. doi: 10.5194/cp-9-2319-2013
    [24]
    Gong Xun, Knorr G, Lohmann G, et al. Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states[J]. Geophysical Research Letters, 2013, 40(14): 3698−3704. doi: 10.1002/grl.50701
    [25]
    Maier E, Zhang X, Abelmann A, et al. North Pacific freshwater events linked to changes in glacial ocean circulation[J]. Nature, 2018, 559(7713): 241−245. doi: 10.1038/s41586-018-0276-y
    [26]
    Merlis T M, Schneider T, Bordoni S, et al. The tropical precipitation response to orbital precession[J]. Journal of Climate, 2013, 26(6): 2010−2021. doi: 10.1175/JCLI-D-12-00186.1
    [27]
    Ding Zhaomin, Huang Gang, Liu Fei, et al. Responses of global monsoon and seasonal cycle of precipitation to precession and obliquity forcing[J]. Climate Dynamics, 2021, 56(11/12): 3733−3747.
    [28]
    Wang Chunzai, Zhang Liping, Lee S K. Response of freshwater flux and sea surface salinity to variability of the Atlantic warm pool[J]. Journal of Climate, 2013, 26(4): 1249−1267. doi: 10.1175/JCLI-D-12-00284.1
    [29]
    Wu Chihua, Tsai P C. Obliquity-driven changes in East Asian seasonality[J]. Global and Planetary Change, 2020, 189: 103161. doi: 10.1016/j.gloplacha.2020.103161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (781) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return