Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Wu Youting,Yang Yang,Liang Xiangsan. Typical spatiotemporal patterns of the Kuroshio south of Japan and the Kuroshio extension using self-organizing maps and their causal relationship[J]. Haiyang Xuebao,2022, 44(9):38–54 doi: 10.12284/hyxb2022069
Citation: Wu Youting,Yang Yang,Liang Xiangsan. Typical spatiotemporal patterns of the Kuroshio south of Japan and the Kuroshio extension using self-organizing maps and their causal relationship[J]. Haiyang Xuebao,2022, 44(9):38–54 doi: 10.12284/hyxb2022069

Typical spatiotemporal patterns of the Kuroshio south of Japan and the Kuroshio extension using self-organizing maps and their causal relationship

doi: 10.12284/hyxb2022069
  • Received Date: 2021-10-12
  • Rev Recd Date: 2022-01-25
  • Publish Date: 2022-08-29
  • Previous studies have shown that the decadal modulation of the Kuroshio extension (KE) system is controlled by the Pacific decadal oscillation-associated forcing from downstream. However, recent observation reveals that this mechanism ceases to function after August 2017. Meanwhile, a large meander is under development in the KE’s upstream, i.e., south of Japan. Using the self-organizing map (SOM), we investigate the characteristic spatial and temporal patterns of the Kuroshio south of Japan and the KE and their causal relations, based on the 26-year (1993−2018) satellite altimetry data of sea level anomaly (SLA). The typical spatial patterns are well extracted, and their temporal trajectories indicate that the KE tends to be stable (unstable) when the upstream Kuroshio takes a large meander (an offshore nonlarge meander) path. To further unravel the underlying cause-and-effect relation between the two systems, we apply the information flow-based causality analysis to the typical regions of SLA and its associated temporal modes identified with the SOM. It is found that during the large meander event, the Kuroshio south of Japan and the KE are mutually causal, but have different hotspots. The information flows from the former to the latter mainly occur in the southeastern area off the Kii Peninsula and the time-mean ridge and trough of the KE jet, while those from the latter to the former are mainly concentrated in the time-mean ridge and trough of the KE jet, and the recirculation gyre of the Kuroshio. These results indicate that the Kuroshio large meander is an important factor influencing the KE’s stability, while the KE affects its upstream Kuroshio via modulating the associated recirculation gyres. In contrast, when the offshore nonlarge meander path is taken, a one-way causality is identified from the Kuroshio to the KE, mainly occurring over the Izu-Ogasawara Ridge and in the recirculation gyres. This may be attributed to the constantly downstream transport of negative SLAs into the KE’s recirculation gyre, which leads to an unstable KE.
  • loading
  • [1]
    Qiu Bo, Chen Shuiming, Schneider N, et al. On the reset of the wind-forced decadal Kuroshio extension variability in late 2017[J]. Journal of Climate, 2020, 33(24): 10813−10828. doi: 10.1175/JCLI-D-20-0237.1
    [2]
    Kawabe M. Sea level variations at the Izu Islands and typical stable paths of the Kuroshio[J]. Journal of the Oceanographical Society of Japan, 1985, 41(5): 307−326. doi: 10.1007/BF02109238
    [3]
    Sugimoto S, Hanawa K. Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio extension in the east[J]. Journal of Oceanography, 2012, 68(1): 219−225. doi: 10.1007/s10872-011-0089-1
    [4]
    Yang Yang, Liang X S. New perspectives on the generation and maintenance of the Kuroshio large meander[J]. Journal of Physical Oceanography, 2019, 49(8): 2095−2113. doi: 10.1175/JPO-D-18-0276.1
    [5]
    Usui N, Tsujino H, Nakano H, et al. Formation process of the Kuroshio large meander in 2004[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08047.
    [6]
    Miyazawa Y, Guo Xinyu, Yamagata T. Roles of mesoscale eddies in the Kuroshio paths[J]. Journal of Physical Oceanography, 2004, 34(10): 2203−2222. doi: 10.1175/1520-0485(2004)034<2203:ROMEIT>2.0.CO;2
    [7]
    Qiu Bo, Chen Shuiming. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090−2103. doi: 10.1175/JPO2807.1
    [8]
    Qiu Bo, Chen Shuiming. Eddy-mean flow interaction in the decadally modulating Kuroshio extension system[J]. Deep-Sea Research Part II: topical Studies in Oceanography, 2010, 57(13/14): 1098−1110.
    [9]
    Yang Yang, Liang X S. The instabilities and multiscale energetics underlying the mean-interannual-eddy interactions in the Kuroshio extension region[J]. Journal of Physical Oceanography, 2016, 46(5): 1477−1494. doi: 10.1175/JPO-D-15-0226.1
    [10]
    Qiu Bo. The Kuroshio extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction[J]. Journal of Oceanography, 2002, 58(1): 57−75. doi: 10.1023/A:1015824717293
    [11]
    Yang Haiyuan, Qiu Bo, Chang Ping, et al. Decadal variability of eddy characteristics and energetics in the Kuroshio extension: unstable versus stable states[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6653−6669. doi: 10.1029/2018JC014081
    [12]
    Qiu Bo, Chen Shuiming, Schneider N, et al. A coupled decadal prediction of the dynamic state of the Kuroshio extension system[J]. Journal of Climate, 2014, 27(4): 1751−1764. doi: 10.1175/JCLI-D-13-00318.1
    [13]
    Qiu Bo. Kuroshio extension variability and forcing of the pacific decadal oscillations: responses and potential feedback[J]. Journal of Physical Oceanography, 2003, 33(12): 2465−2482. doi: 10.1175/1520-0485(2003)033<2465:KEVAFO>2.0.CO;2
    [14]
    Liu Yonggang, Weisberg R H. Ocean currents and sea surface heights estimated across the West Florida Shelf[J]. Journal of Physical Oceanography, 2007, 37(6): 1697−1713. doi: 10.1175/JPO3083.1
    [15]
    Jin Baogang, Wang Guihua, Liu Yonggang, et al. Interaction between the East China Sea Kuroshio and the Ryukyu current as revealed by the self-organizing map[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12047. doi: 10.1029/2010JC006437
    [16]
    Liu Yonggang, Weisberg R H, Vignudelli S, et al. Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps[J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2347−2366. doi: 10.1002/2015JC011493
    [17]
    Ma Fang, Diao Yi’na, Luo Dehai. Spatiotemporal characteristics of the sea level anomaly in the Kuroshio extension using a self-organizing map[J]. Atmospheric and Oceanic Science Letters, 2016, 9(6): 471−478. doi: 10.1080/16742834.2016.1235462
    [18]
    Dong Zibo, Yang Dazhi, Reindl T, et al. Satellite image analysis And a hybrid ESSS/ANN model to forecast solar irradiance in the tropics[J]. Energy Conversion and Management, 2014, 79: 66−73. doi: 10.1016/j.enconman.2013.11.043
    [19]
    白玫, 吴辉. 利用SOM神经网络研究长江口邻近海域海表温度特征[J]. 华东师范大学学报(自然科学版), 2018(4): 184−194.

    Bai Mei, Wu Hui. Characteristics of sea surface temperature in the Changjiang Estuary and adjacent waters based on a self-organizing map[J]. Journal of East China Normal University (Natural Science), 2018(4): 184−194.
    [20]
    罗未萌, 钱维宏, 蒋宁, 等. SOM方法在中国东部夏季降水分型中的应用[J]. 北京大学学报(自然科学版), 2018, 54(5): 970−982.

    Luo Weimeng, Qian Weihong, Jiang Ning, et al. Application of SOM method in summer precipitation patterns in eastern China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 970−982.
    [21]
    吴胜男, 江志红. 基于自组织映射的长江中下游夏季天气分型及其降水特征[J]. 气象科学, 2019, 39(5): 588−598.

    Wu Shengnan, Jiang Zhihong. Synoptic classification and precipitation characteristics in summer over the Yangtze River Basin based on self-organizing map[J]. Journal of the Meteorological Sciences, 2019, 39(5): 588−598.
    [22]
    Richardson A J, Risien C, Shillington F A. Using self-organizing maps to identify patterns in satellite imagery[J]. Progress in Oceanography, 2003, 59(2/3): 223−239.
    [23]
    Liu Yonggang, Weisberg R H, Mooers C N K. Performance evaluation of the self-organizing map for feature extraction[J]. Journal of Geophysical Research: Oceans, 2006, 111(C5): C05018.
    [24]
    Liang X S. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2016, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201
    [25]
    Liang X S. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
    [26]
    Stips A. On the causal structure between CO2 and global temperature[J]. Scientific Reports, 2016, 6: 21691. doi: 10.1038/srep21691
    [27]
    Xiao Haixia, Zhang Feng, Miao Lijuan, et al. Long-term trends in Arctic surface temperature and potential causality over the last 100 years[J]. Climate Dynamics, 2020, 55(5/6): 1443−1456.
    [28]
    Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424−438. doi: 10.2307/1912791
    [29]
    Liang X S. Information flow within stochastic dynamical systems[J]. Physical Review E, 2008, 78(3): 031113. doi: 10.1103/PhysRevE.78.031113
    [30]
    Liang X S. Normalizing the causality between time series[J]. Physical Review E, 2015, 92(2): 022126.
    [31]
    Rong Yineng, Liang X S. Panel data causal inference using a rigorous information flow analysis for homogeneous, independent and identically distributed datasets[J]. IEEE Access, 2021, 9: 47266−47274. doi: 10.1109/ACCESS.2021.3068273
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (520) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return