Citation: | Wu Youting,Yang Yang,Liang Xiangsan. Typical spatiotemporal patterns of the Kuroshio south of Japan and the Kuroshio extension using self-organizing maps and their causal relationship[J]. Haiyang Xuebao,2022, 44(9):38–54 doi: 10.12284/hyxb2022069 |
[1] |
Qiu Bo, Chen Shuiming, Schneider N, et al. On the reset of the wind-forced decadal Kuroshio extension variability in late 2017[J]. Journal of Climate, 2020, 33(24): 10813−10828. doi: 10.1175/JCLI-D-20-0237.1
|
[2] |
Kawabe M. Sea level variations at the Izu Islands and typical stable paths of the Kuroshio[J]. Journal of the Oceanographical Society of Japan, 1985, 41(5): 307−326. doi: 10.1007/BF02109238
|
[3] |
Sugimoto S, Hanawa K. Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio extension in the east[J]. Journal of Oceanography, 2012, 68(1): 219−225. doi: 10.1007/s10872-011-0089-1
|
[4] |
Yang Yang, Liang X S. New perspectives on the generation and maintenance of the Kuroshio large meander[J]. Journal of Physical Oceanography, 2019, 49(8): 2095−2113. doi: 10.1175/JPO-D-18-0276.1
|
[5] |
Usui N, Tsujino H, Nakano H, et al. Formation process of the Kuroshio large meander in 2004[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08047.
|
[6] |
Miyazawa Y, Guo Xinyu, Yamagata T. Roles of mesoscale eddies in the Kuroshio paths[J]. Journal of Physical Oceanography, 2004, 34(10): 2203−2222. doi: 10.1175/1520-0485(2004)034<2203:ROMEIT>2.0.CO;2
|
[7] |
Qiu Bo, Chen Shuiming. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090−2103. doi: 10.1175/JPO2807.1
|
[8] |
Qiu Bo, Chen Shuiming. Eddy-mean flow interaction in the decadally modulating Kuroshio extension system[J]. Deep-Sea Research Part II: topical Studies in Oceanography, 2010, 57(13/14): 1098−1110.
|
[9] |
Yang Yang, Liang X S. The instabilities and multiscale energetics underlying the mean-interannual-eddy interactions in the Kuroshio extension region[J]. Journal of Physical Oceanography, 2016, 46(5): 1477−1494. doi: 10.1175/JPO-D-15-0226.1
|
[10] |
Qiu Bo. The Kuroshio extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction[J]. Journal of Oceanography, 2002, 58(1): 57−75. doi: 10.1023/A:1015824717293
|
[11] |
Yang Haiyuan, Qiu Bo, Chang Ping, et al. Decadal variability of eddy characteristics and energetics in the Kuroshio extension: unstable versus stable states[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6653−6669. doi: 10.1029/2018JC014081
|
[12] |
Qiu Bo, Chen Shuiming, Schneider N, et al. A coupled decadal prediction of the dynamic state of the Kuroshio extension system[J]. Journal of Climate, 2014, 27(4): 1751−1764. doi: 10.1175/JCLI-D-13-00318.1
|
[13] |
Qiu Bo. Kuroshio extension variability and forcing of the pacific decadal oscillations: responses and potential feedback[J]. Journal of Physical Oceanography, 2003, 33(12): 2465−2482. doi: 10.1175/1520-0485(2003)033<2465:KEVAFO>2.0.CO;2
|
[14] |
Liu Yonggang, Weisberg R H. Ocean currents and sea surface heights estimated across the West Florida Shelf[J]. Journal of Physical Oceanography, 2007, 37(6): 1697−1713. doi: 10.1175/JPO3083.1
|
[15] |
Jin Baogang, Wang Guihua, Liu Yonggang, et al. Interaction between the East China Sea Kuroshio and the Ryukyu current as revealed by the self-organizing map[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12047. doi: 10.1029/2010JC006437
|
[16] |
Liu Yonggang, Weisberg R H, Vignudelli S, et al. Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps[J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2347−2366. doi: 10.1002/2015JC011493
|
[17] |
Ma Fang, Diao Yi’na, Luo Dehai. Spatiotemporal characteristics of the sea level anomaly in the Kuroshio extension using a self-organizing map[J]. Atmospheric and Oceanic Science Letters, 2016, 9(6): 471−478. doi: 10.1080/16742834.2016.1235462
|
[18] |
Dong Zibo, Yang Dazhi, Reindl T, et al. Satellite image analysis And a hybrid ESSS/ANN model to forecast solar irradiance in the tropics[J]. Energy Conversion and Management, 2014, 79: 66−73. doi: 10.1016/j.enconman.2013.11.043
|
[19] |
白玫, 吴辉. 利用SOM神经网络研究长江口邻近海域海表温度特征[J]. 华东师范大学学报(自然科学版), 2018(4): 184−194.
Bai Mei, Wu Hui. Characteristics of sea surface temperature in the Changjiang Estuary and adjacent waters based on a self-organizing map[J]. Journal of East China Normal University (Natural Science), 2018(4): 184−194.
|
[20] |
罗未萌, 钱维宏, 蒋宁, 等. SOM方法在中国东部夏季降水分型中的应用[J]. 北京大学学报(自然科学版), 2018, 54(5): 970−982.
Luo Weimeng, Qian Weihong, Jiang Ning, et al. Application of SOM method in summer precipitation patterns in eastern China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 970−982.
|
[21] |
吴胜男, 江志红. 基于自组织映射的长江中下游夏季天气分型及其降水特征[J]. 气象科学, 2019, 39(5): 588−598.
Wu Shengnan, Jiang Zhihong. Synoptic classification and precipitation characteristics in summer over the Yangtze River Basin based on self-organizing map[J]. Journal of the Meteorological Sciences, 2019, 39(5): 588−598.
|
[22] |
Richardson A J, Risien C, Shillington F A. Using self-organizing maps to identify patterns in satellite imagery[J]. Progress in Oceanography, 2003, 59(2/3): 223−239.
|
[23] |
Liu Yonggang, Weisberg R H, Mooers C N K. Performance evaluation of the self-organizing map for feature extraction[J]. Journal of Geophysical Research: Oceans, 2006, 111(C5): C05018.
|
[24] |
Liang X S. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2016, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201
|
[25] |
Liang X S. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
|
[26] |
Stips A. On the causal structure between CO2 and global temperature[J]. Scientific Reports, 2016, 6: 21691. doi: 10.1038/srep21691
|
[27] |
Xiao Haixia, Zhang Feng, Miao Lijuan, et al. Long-term trends in Arctic surface temperature and potential causality over the last 100 years[J]. Climate Dynamics, 2020, 55(5/6): 1443−1456.
|
[28] |
Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424−438. doi: 10.2307/1912791
|
[29] |
Liang X S. Information flow within stochastic dynamical systems[J]. Physical Review E, 2008, 78(3): 031113. doi: 10.1103/PhysRevE.78.031113
|
[30] |
Liang X S. Normalizing the causality between time series[J]. Physical Review E, 2015, 92(2): 022126.
|
[31] |
Rong Yineng, Liang X S. Panel data causal inference using a rigorous information flow analysis for homogeneous, independent and identically distributed datasets[J]. IEEE Access, 2021, 9: 47266−47274. doi: 10.1109/ACCESS.2021.3068273
|