Citation: | Zang Jinxia,Liu Jianqiang,Yin Xiaobin, et al. Study on sea ice classification of HY-1C satellite coastal zone imager images based on the optimal feature set[J]. Haiyang Xuebao,2022, 44(5):35–46 doi: 10.12284/hyxb2022021 |
[1] |
崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在SAR遥感海冰分类中的应用可行性分析[J]. 海洋预报, 2019, 36(5): 77−85. doi: 10.11737/j.issn.1003-0239.2019.05.010
Cui Yanrong, Zou Bin, Han Zhen, et al. Feasibility analysis of convolutional neural networks in remote sensing sea ice classification[J]. Marine Forecasts, 2019, 36(5): 77−85. doi: 10.11737/j.issn.1003-0239.2019.05.010
|
[2] |
刘眉洁, 戴永寿, 张杰, 等. 高分辨率全极化合成孔径雷达数据海冰二次分类方法研究[J]. 海洋学报, 2013, 35(4): 80−87.
Liu Meijie, Dai Yongshou, Zhang Jie, et al. The research on the object-based method of sea ice classification of high-resolution quad-polarization SAR data[J]. Haiyang Xuebao, 2013, 35(4): 80−87.
|
[3] |
张晰. 极化SAR渤海海冰厚度探测研究[D]. 青岛: 中国海洋大学, 2011.
Zhang Xi. Research on sea ice thickness detection by polarimetric SAR in Bohai Sea[D]. Qingdao: Ocean University of China, 2011.
|
[4] |
Tan Wenxia, LeDrew E. Monitoring Arctic sea ice phenology change using hypertemporal remotely sensed data: 1989–2010[J]. Theoretical and Applied Climatology, 2016, 125(1/2): 353−363.
|
[5] |
Geldsetzer T, Arkett M, Zagon T, et al. All-season compact-polarimetry C-band SAR observations of sea ice[J]. Canadian Journal of Remote Sensing, 2015, 41(5): 485−504. doi: 10.1080/07038992.2015.1120661
|
[6] |
Scheuchl B, Caves R, Cumming I, et al. Automated sea ice classification using spaceborne polarimetric SAR data[C]//IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium. Sydney: IEEE, 2001: 3117−3119.
|
[7] |
Singha S, Johansson M, Hughes N, et al. Arctic sea ice characterization using spaceborne fully polarimetric L-, C-, and X-Band SAR with validation by airborne measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3715−3734. doi: 10.1109/TGRS.2018.2809504
|
[8] |
刘惠颖. 宽幅多极化SAR海冰信息提取方法与类型识别研究[D]. 北京: 中国科学院遥感与数字地球研究所, 2017.
Liu Huiying. Study on parameter retrieval and type recognition of sea ice using wide-swath and multi-polarization SAR data[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2017.
|
[9] |
赵泉华, 郭世波, 李晓丽, 等. 利用目标分解特征的全极化SAR海冰分类[J]. 测绘学报, 2018, 47(12): 1609−1620. doi: 10.11947/j.AGCS.2018.20170551
Zhao Quanhua, Guo Shibo, Li Xiaoli, et al. Polarimetric SAR sea ice classification based on target decompositional features[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12): 1609−1620. doi: 10.11947/j.AGCS.2018.20170551
|
[10] |
Riggs G A, Hall D K, Ackerman S A. Sea ice extent and classification mapping with the moderate resolution imaging spectroradiometer airborne simulator[J]. Remote Sensing of Environment, 1999, 68(2): 152−163. doi: 10.1016/S0034-4257(98)00107-2
|
[11] |
史培军, 范一大, 哈斯, 等. 利用AVHRR和MODIS数据测算海冰资源量——以渤海海冰资源测算为例[J]. 自然资源学报, 2002, 17(2): 138−143. doi: 10.3321/j.issn:1000-3037.2002.02.002
Shi Peijun, Fan Yida, Ha Si, et al. Calculating gross sea ice resource using AVHRR and MODIS data[J]. Journal of Natural Resources, 2002, 17(2): 138−143. doi: 10.3321/j.issn:1000-3037.2002.02.002
|
[12] |
吴龙涛, 吴辉碇, 孙兰涛, 等. MODIS渤海海冰遥感资料反演[J]. 中国海洋大学学报(自然科学版), 2006, 36(2): 173−179.
Wu Longtao, Wu Huiding, Sun Lantao, et al. Retrieval of sea ice in the Bohai Sea from MODIS data[J]. Periodical of Ocean University of China, 2006, 36(2): 173−179.
|
[13] |
王姝力, 王志勇, 王磊. 基于Landsat-8和Sentinel-1A辽东湾海冰分类研究[J]. 北京测绘, 2019, 33(12): 1486−1492.
Wang Shuli, Wang Zhiyong, Wang Lei. Study of sea ice classification of Landsat-8 and Sentinel-1A in Liaodong Bay[J]. Beijing Surveying and Mapping, 2019, 33(12): 1486−1492.
|
[14] |
张晰, 张杰, 孟俊敏. Landsat-8与GF-1卫星渤海海冰探测能力对比研究[J]. 海洋科学, 2015, 39(2): 50−56. doi: 10.11759/hykx20141011018
Zhang Xi, Zhang Jie, Meng Junmin. Comparison of sea ice detection ability of Landsat-8 and GF-1 in the Bohai Sea[J]. Marine Sciences, 2015, 39(2): 50−56. doi: 10.11759/hykx20141011018
|
[15] |
Barbieux K, Charitsi A, Merminod B. Icy lakes extraction and water-ice classification using Landsat-8 OLI multispectral data[J]. International Journal of Remote Sensing, 2018, 39(11): 3646−3678. doi: 10.1080/01431161.2018.1447165
|
[16] |
王志勇, 王丽华, 刘健, 等. 基于多源中高分辨率遥感数据提取渤海辽东湾海冰要素信息[J]. 自然灾害学报, 2021, 30(1): 174−182.
Wang Zhiyong, Wang Lihua, Liu Jian, et al. Extraction of sea ice element information in Liaodong Bay of the Bohai Sea based on multi-source medium and high resolution remote sensing data[J]. Journal of Natural Disasters, 2021, 30(1): 174−182.
|
[17] |
刘眉洁. 基于高分辨率极化SAR的海冰分类和厚度探测方法研究[D]. 青岛: 中国石油大学(华东), 2016.
Liu Meijie. Research on the sea ice classification and thickness detection with high-resolution and polarimetric SAR data[D]. Qingdao: China University of Petroleum (East China), 2016.
|
[18] |
庞海洋, 孔祥生, 孙志伟, 等. 基于遥感和气象数据对辽东湾海冰变化预测研究[J]. 海洋与湖沼, 2018, 49(4): 725−733.
Pang Haiyang, Kong Xiangsheng, Sun Zhiwei, et al. The forecast model of sea ice changes in Liaodong Bay using remote sensing and meteorological data[J]. Oceanologia et Limnologia Sinica, 2018, 49(4): 725−733.
|
[19] |
罗会兰, 郭敏杰, 孔繁胜. 集成多特征与稀疏编码的图像分类方法[J]. 模式识别与人工智能, 2014, 27(4): 345−355. doi: 10.3969/j.issn.1003-6059.2014.04.009
Luo Huilan, Guo Minjie, Kong Fansheng. Image classification method by combining multi-features and sparse coding[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 345−355. doi: 10.3969/j.issn.1003-6059.2014.04.009
|
[20] |
Haq M A, Jain K, Menon K P R. Monitoring glacial lakes using remote sensing Tech[C]//Proceedings of the 14th Annual International Conference and Exhibition on Geospatial Information Technology and Applications. Gurgaon: India Geospatial Forum, 2012.
|
[21] |
张明, 吕晓琪, 张晓峰, 等. 结合纹理特征的SVM海冰分类方法研究[J]. 海洋学报, 2018, 40(11): 149−156.
Zhang Ming, Lü Xiaoqi, Zhang Xiaofeng, et al. Research on SVM sea ice classification based on texture features[J]. Haiyang Xuebao, 2018, 40(11): 149−156.
|
[22] |
逯跃锋, 和鑫, 陆黎娟, 等. 基于纹理分析的SAR海冰图像分类方法[J]. 山东理工大学学报(自然科学版), 2019, 33(1): 51−55.
Lu Yuefeng, He Xin, Lu Lijuan, et al. Research on classification method of the SAR sea ice image based on texture analysis[J]. Journal of Shandong University of Technology (Natural Science Edition), 2019, 33(1): 51−55.
|
[23] |
Kiala Z, Mutanga O, Odindi J, et al. Feature selection on Sentinel-2 multispectral imagery for mapping a landscape infested by parthenium weed[J]. Remote Sensing, 2019, 11(16): 1892. doi: 10.3390/rs11161892
|
[24] |
边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 2004: 9-42.
Bian Zhaoqi, Zhang Xuegong. Pattern Recognition[M]. Beijing: Tsinghua University Press, 2004: 9−42.
|
[25] |
Bogdanov A V, Sandven S, Johannessen O M, et al. Multisensor approach to automated classification of sea ice image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1648−1664. doi: 10.1109/TGRS.2005.846882
|
[26] |
沈杨. 结合MRF与ν-SVM的SAR海冰图像分类[D]. 合肥: 合肥工业大学, 2015.
Shen Yang. Combining MRF and v-SVM for SAR sea ice image classification[D]. Hefei: Hefei University of Technology, 2015.
|