留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潮滩底栖微藻-泥沙组分时空变化规律研究

周怡 张荷悦 康梦涵 谷玉先 杨洪燕 龚明劼 周曾 张亚楠

周怡,张荷悦,康梦涵,等. 潮滩底栖微藻-泥沙组分时空变化规律研究[J]. 海洋学报,2025,47(x):1–12
引用本文: 周怡,张荷悦,康梦涵,等. 潮滩底栖微藻-泥沙组分时空变化规律研究[J]. 海洋学报,2025,47(x):1–12
Yi Zhou,Heyue Zhang,Menghan Kang, et al. The influence law of tidal flat benthic microalgae on sediment components[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Yi Zhou,Heyue Zhang,Menghan Kang, et al. The influence law of tidal flat benthic microalgae on sediment components[J]. Haiyang Xuebao,2025, 47(x):1–12

潮滩底栖微藻-泥沙组分时空变化规律研究

基金项目: 自然资源部国土卫星遥感应用重点实验室开放基金(KLSMNR−G202217);国家自然科学基金项目(52201316,42361144873);中央高校基本科研业务费专项资金(B220202077);黄海湿地课题项目(HHSDKT202306)。
详细信息
    作者简介:

    周怡(2000—),女,湖北省宜昌市人。主要从事河口海岸泥沙分选作用研究。E-mail:hhu_zhouy@163.com

    通讯作者:

    张荷悦,副研究员,主要从事潮滩生物-物理互馈机制研究。E-mail: zhangheyue@hhu.edu.cn

The influence law of tidal flat benthic microalgae on sediment components

  • 摘要: 潮滩的泥沙组分与底栖微藻之间存在复杂的相互作用,影响潮滩生态系统稳定和地貌演变。为探究底栖微藻对泥沙组分的影响规律,本研究以江苏条子泥典型粉砂淤泥质潮滩为研究对象,通过野外观测和实验室分析,阐明了底栖微藻与泥沙组分的时空变化规律及相互关系。研究结果表明,温度、底栖动物活动、沙源等生物及非生物因素的季节性及空间性变化导致了底栖微藻生物量与沉积物粒径分布的时空差异性,秋冬季底栖微藻生物量高出春夏季18.6%,约50%底栖微藻分布于表层0−1 cm,春夏季中值粒径高出冬季17.8%;潮沟两侧水动力差异导致底栖微藻生物量与泥沙组分的同步突变现象,凸岸区域淤积作用明显,细颗粒泥沙大量沉积,中值粒径减小约75%且微藻生物量增幅最高达113%,而凹岸区域侵蚀强烈,中值粒径增幅最高可达213%,生物量降低约76%;环境条件和微藻群落组成共同驱动底栖微藻与泥沙组分关系的时空变化,春秋季因温度及光照适宜,底栖微藻生物量与细颗粒泥沙组分含量的相关性随深度增加而减弱,夏冬季因气候极端,次表层相关性最高,夏季多样化的微藻群落增强了对各组分泥沙的生物稳定作用,而冬季硅藻的优势地位加强了对黏土及细粉砂的选择性。
  • 图  1  江苏省条子泥湿地研究区

    (a)研究区位置图采样断面(b)采样点布设图

    Fig.  1  Tiaozini tidal flat research area in Jiangsu Province

    (a) Location map of the research area sampling section (b) sampling point layout map

    图  2  南断面各季节剖面形态(1985国家高程基准)

    Fig.  2  Tidal flat profile of study area

    图  3  各季节S-S断面底栖微藻种类组成

    (a)春季(b)夏季(c)秋季(d)冬季

    Fig.  3  Composition of benthic microalgae species in S-S sections in different seasons

    (a) Spring (b) Summer (c) Autumn (d) Winter

    图  4  各季节底栖微藻生物量与泥沙中值粒径空间性变化

    (a)春季S-S断面(b)秋季S-S断面(c)秋季N-N断面(d)夏季S-S断面(e)冬季S-S断面(f)夏季N-N断面

    Fig.  4  Spatial variations in the biomass of benthic microalgae and the median particle size of sediment in each season

    (a) Section S-S in spring; (b) Section S-S in autumn; (c) Section N-N in autumn; (d) Section S-S in summer; (e) Section S-S in winter; (f) Section N-N in summer

    图  5  底栖微藻-泥沙各组分占比相关性时空变化

    Fig.  5  Temporal and spatial variations in the proportion of benthic microalgae sediment components

    表  1  各季节S-S断面底栖微藻多样性指数

    Tab.  1  The diversity index of benthic microalgae at the S-S section in each season

    季节S1S2S3S4S5S6S7S8S9S10S11
    春季1.051.091.091.050.971.011.120.960.760.350.88
    夏季1.261.351.221.231.241.171.110.930.570.331.08
    秋季0.921.021.231.241.001.221.420.961.361.110.92
    冬季0.620.940.990.560.540.780.82
    下载: 导出CSV

    表  2  不同季节S-S断面各测点底栖微藻优势种及优势度

    Tab.  2  Dominant species and dominance index of benthic microalgae at sampling points along the S-S transect across different seasons

    季节优势种优势度
    S1S2S3S4S5S6S7S8S9S10S11
    春季硅藻0.2390.1760.2500.2160.2380.2530.2060.3130.6020.8610.404
    裸藻0.1610.3220.2550.3250.5100.4720.3470.1630.1030.0190.010
    夏季硅藻0.3300.2860.2980.4290.3040.2680.3870.5260.8560.8720.226
    蓝藻0.1030.1200.1800.1630.2260.2730.1790.1190.1170.0040.315
    裸藻0.3000.2870.0350.0410.0430.0140.0310.0090.0090.0100.009
    秋季硅藻0.6420.6200.3870.4650.2920.3910.3690.5400.3980.5280.499
    蓝藻0.0240.0330.2040.0530.0900.1110.2930.0890.1810.1140.120
    裸藻0.1130.0950.0910.1040.0540.1180.3340.0440.1810.1140.013
    冬季硅藻0.6650.5320.4130.7550.7110.6170.680
    下载: 导出CSV
  • [1] 张长宽, 徐孟飘, 周曾, 等. 潮滩剖面形态与泥沙分选研究进展[J]. 水科学进展, 2018, 29(2): 269−282.

    Zhang Changkuan, Xu Mengpiao, Zhou Zeng, et al. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats[J]. Advances in Water Science, 2018, 29(2): 269−282.
    [2] 陈才俊. 江苏淤长型淤泥质潮滩的剖面发育[J]. 海洋与湖沼, 1991, 22(4): 360−368.

    Chen Caijun. Development of depositional tidal flat in Jiangsu province[J]. Oceanologia et Limnologia Sinica, 1991, 22(4): 360−368.
    [3] Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
    [4] 王庆, 王小鲁, 李雪艳, 等. 黄河三角洲南部废弃三角洲潮间滩涂表层沉积粒度特征及其粗化现象[J]. 第四纪研究, 2017, 37(2): 353−367.

    Wang Qing, Wang Xiaolu, Li Xueyan, et al. Grain size characteristics and coarsening phenomenon of inter-tidal flat surficial sediment along the abandoned southern yellow river sub-delta[J]. Quaternary Sciences, 2017, 37(2): 353−367.
    [5] Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang delta, China: with an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011
    [6] Mariotti G, Fagherazzi S. Modeling the effect of tides and waves on benthic biofilms[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G04010.
    [7] van de Koppel J, Herman P M J, Thoolen P, et al. Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat[J]. Ecology, 2001, 82(12): 3449−3461. doi: 10.1890/0012-9658(2001)082[3449:DASSOI]2.0.CO;2
    [8] 周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3): 470−484.

    Zhou Zeng, Chen Lei, Lin Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3): 470−484.
    [9] 龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291

    Gong Zheng, Chen Xindi, Zhou Zeng, et al. The roles of biological factors in coastal sediment transport: a review[J]. Chinese Science Bulletin, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291
    [10] Dame R F. Ecology of Marine Bivalves: An Ecosystem Approach[M]. 2nd ed. Boca Raton: CRC Press, 2012.
    [11] Castro P, Huber M E. Marine Biology[M]. 5th ed. New York: McGraw-Hill Higher Education, 2005.
    [12] Kirby J S, Stattersfield A J, Butchart S H M, et al. Key conservation issues for migratory land-and waterbird species on the world's major flyways[J]. Bird Conservation International, 2008, 18(S1): S49−S73. doi: 10.1017/S0959270908000439
    [13] van de Kam J, Ens B J, Piersma T, et al. Shorebirds. An Illustrated Behavioural Ecology[M]. Utrecht: KNNV Publishers, 2004.
    [14] Droppo I G. Rethinking what constitutes suspended sediment[J]. Hydrological Processes, 2001, 15(9): 1551−1564. doi: 10.1002/hyp.228
    [15] Paterson D M, Black K S. Water flow, sediment dynamics and benthic ecology[J]. Advances in Ecological Research, 1999, 29: 155−193.
    [16] Herman P M J, Middelburg J J, Heip C H R. Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project[J]. Continental Shelf Research, 2001, 21(18/19): 2055−2071.
    [17] 陈益山. 细颗粒泥沙生物膜生长及对吸附与解吸影响的实验研究[D]. 北京: 清华大学, 2017.

    Chen Yishan. Experiment on biofilm growth of cohesive sediment and effect on adsorption or desorption[D]. Beijing: Tsinghua University, 2017.
    [18] Sutherland T F, Amos C L, Grant J. The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary[J]. Limnology and Oceanography, 1998, 43(2): 225−235. doi: 10.4319/lo.1998.43.2.0225
    [19] Chen Xindi, Zhang Changkuan, Paterson D M, et al. The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms: the role of 'biofilm precursors'[J]. Earth Surface Processes and Landforms, 2019, 44(7): 1471−1481. doi: 10.1002/esp.4573
    [20] Garwood J C, Hill P S, Law B A. Biofilms and size sorting of fine sediment during erosion in intertidal sands[J]. Estuaries and Coasts, 2013, 36(5): 1024−1036. doi: 10.1007/s12237-013-9618-z
    [21] Garwood J C, Hill P S, MacIntyre H L, et al. Grain sizes retained by diatom biofilms during erosion on tidal flats linked to bed sediment texture[J]. Continental Shelf Research, 2015, 104: 37−44. doi: 10.1016/j.csr.2015.05.004
    [22] Arnon S, Marx L P, Searcy K E, et al. Effects of overlying velocity, particle size, and biofilm growth on stream-subsurface exchange of particles[J]. Hydrological Processes, 2010, 24(1): 108−114. doi: 10.1002/hyp.7490
    [23] Shi Benwei, Pratolongo P D, Du Yongfen, et al. Influence of macrobenthos (Meretrix meretrix linnaeus) on erosion‐accretion processes in intertidal flats: a case study from a cultivation zone[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1): e2019JG005345. doi: 10.1029/2019JG005345
    [24] Cadée G C, Hegeman J. Persisting high levels of primary production at declining phosphate concentrations in the dutch coastal area (marsdiep)[J]. Netherlands Journal of Sea Research, 1993, 31(2): 147−152. doi: 10.1016/0077-7579(93)90004-C
    [25] 宁修仁, 刘子琳. 象山港潮滩底栖微型藻类现存量的初级生产力[J]. 海洋学报, 1999, 21(3): 98−105.

    Ning Xiuren, Liu Zilin. Standing crop and productivity of the benthic microflora living on tidal flats of the Xiangshan Bay[J]. Haiyang Xuebao, 1999, 21(3): 98−105.
    [26] 姚晓. 黄河三角洲南部潮间带底栖生产力研究[D]. 青岛: 中国海洋大学, 2010.

    Yao Xiao. Study on the benthic productivities in the Southern intertidal area of the Yellow River Delta[D]. Qingdao: Ocean University of China, 2010.
    [27] Daggers T D, Kromkamp J C, Herman P M J, et al. A model to assess microphytobenthic primary production in tidal systems using satellite remote sensing[J]. Remote Sensing of Environment, 2018, 211: 129−145. doi: 10.1016/j.rse.2018.03.037
    [28] Tolhurst T J, Jesus B, Brotas V, et al. Diatom migration and sediment armouring - an example from the Tagus Estuary, Portugal[J]. Hydrobiologia, 2003, 503(1): 183−193.
    [29] de Deckere E M G T, Tolhurst T J, de Brouwer J F C. Destabilization of cohesive intertidal sediments by infauna[J]. Estuarine, Coastal and Shelf Science, 2001, 53(5): 665−669. doi: 10.1006/ecss.2001.0811
    [30] 吕亭豫, 龚政, 张长宽, 等. 粉砂淤泥质潮滩潮沟形态特征及发育演变过程研究现状[J]. 河海大学学报(自然科学版), 2016, 44(2): 178−188.

    Lyu Tingyu, Gong Zheng, Zhang Changkuan, et al. Reviews of morphological characteristics and evolution processes of silty mud tidal creeks[J]. Journal of Hohai University (Natural Sciences), 2016, 44(2): 178−188.
    [31] China Coastal Waterbird Census Group, Bai Qingquan, Chen Jianzhong, et al. Identification of coastal wetlands of international importance for waterbirds: a review of China Coastal Waterbird Surveys 2005–2013[J]. Avian Research, 2015, 6(1): 12. doi: 10.1186/s40657-015-0021-2
    [32] 王义刚, 陈橙, 黄惠明. 江苏省条子泥滩涂匡围相关问题研究[J]. 浙江水利科技, 2012(1): 4−8.

    Wang Yigang, Chen Cheng, Huang Huiming. Beach reclamation related issues of Tiaozini in Jiangsu[J]. Zhejiang Hydrotechnics, 2012(1): 4−8.
    [33] 周聪. 江苏条子泥垦区(一期)围垦工程后评价研究[D]. 南京: 南京师范大学, 2018.

    Zhou Cong. Post evaluation study on the reclamation project of Jiangsu Tiaozi Ni reclamation area (Phase I)[D]. Nanjing: Nanjing Normal University, 2018. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [34] 丁贤荣, 康彦彦, 葛小平, 等. 辐射沙脊群条子泥动力地貌演变遥感分析[J]. 河海大学学报(自然科学版), 2011, 39(2): 231−236.

    Ding Xianrong, Kang Yanyan, Ge Xiaoping, et al. Tidal flat evolution analysis using remote sensing on Tiaozini flat of the radial sand ridges[J]. Journal of Hohai University (Natural Sciences), 2011, 39(2): 231−236.
    [35] 任玉蓉, 王钰祺, 张晴晴, 等. 条子泥围堰区土壤微生物多样性特征[J]. 浙江农业科学, 2023, 64(5): 1283−1291.

    Ren Yurong, Wang Yuqi, Zhang Qingqing, et al. Characteristics of soil microbial diversity in Tiaozini cofferdam area[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(5): 1283−1291.
    [36] 刘潞, 余夏杨, 唐洪根, 等. 围垦对条子泥互花米草种群年季扩张特征的影响[J]. 农业资源与环境学报, 2019, 36(3): 376−384.

    Liu Lu, Yu Xiayang, Tang Honggen, et al. Effect of reclamation on the annual and seasonal characteristics of Spartina alterniflora population in Tiaozini coastal wetland[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 376−384.
    [37] 李少朋, 邢前国. 潮滩底栖微藻生物量垂直变化对其遥感反演模式的影响[J]. 生态科学, 2014, 33(6): 1155−1159.

    Li Shaopeng, Xing Qianguo. Impacts of vertical distribution of microphytobenthos biomass in surface tidal flat sediments on its remote sensing retrieval algorithms[J]. Ecological Science, 2014, 33(6): 1155−1159.
    [38] Liu Weiqiu, Zhang Jielong, Tian Guanghong, et al. Temporal and vertical distribution of microphytobenthos biomass in mangrove sediments of Zhujiang (Pearl River) Estuary[J]. Acta Oceanologica Sinica, 2013, 32(4): 82−88. doi: 10.1007/s13131-013-0302-8
    [39] Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237−1248. doi: 10.1002/esp.261
    [40] Mcnaughton S J. Relationships among functional properties of Californian grassland[J]. Nature, 1967, 216(5111): 168−169.
    [41] Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3−55. doi: 10.1145/584091.584093
    [42] 李万会. 潮滩湿地沉积物中叶绿素a浓度的变化特征及其与沉积物特性间的关系初探[D]. 上海: 华东师范大学, 2006

    Li Wanhui. Primary study on relation between variation of chlorophyll a concentration and sediment grain size on an intertidal flat[D]. Shanghai: East China Normal University, 2006.
    [43] Morris E P, Kromkamp J C. Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium)[J]. European Journal of Phycology, 2003, 38(2): 133−142. doi: 10.1080/0967026031000085832
    [44] 尹晖, 孙耀, 石晓勇, 等. 乳山湾东流区滩涂底栖微藻现存量和初级生产力[J]. 海洋水产研究, 2006, 27(3): 62−66.

    Yin Hui, Sun Yao, Shi Xiaoyong, et al. Biomass and primary productivity of the microphytobenthos on mudflats of the Rushan Bay east flow area[J]. Marine Fisheries Research, 2006, 27(3): 62−66.
    [45] Zhang Heyue, Sun Tao, Cao Haobing, et al. Movement of mud snails affects population dynamics, primary production and landscape heterogeneity in tidal flat ecosystems[J]. Landscape Ecology, 2021, 36(12): 3493−3506. doi: 10.1007/s10980-021-01322-7
    [46] 李晓莉, 陶玲, 代梨梨, 等. 温度和起始密度比对舟形藻和小球藻生长和竞争的影响[J]. 南方水产科学, 2021, 17(5): 18−25. doi: 10.12131/20200250

    Li Xiaoli, Tao Ling, Dai Lili, et al. Effects of temperature and initial cell density ratio on growth and competition between Navicula pelliculosa and Chlorella vulgaris[J]. South China Fisheries Science, 2021, 17(5): 18−25. doi: 10.12131/20200250
    [47] 赵晓夏. 黄龙典型水环境条件下硅藻与钙华的相互影响[D]. 绵阳: 西南科技大学, 2022.

    Zhao Xiaoxia. The relationship between diatom and travertine in Huanglong typical water environment[D]. Mianyang: Southwest University of Science and Technology, 2022.
    [48] Coelho H, Vieira S, Serôdio J. Effects of desiccation on the photosynthetic activity of intertidal microphytobenthos biofilms as studied by optical methods[J]. Journal of Experimental Marine Biology and Ecology, 2009, 381(2): 98−104. doi: 10.1016/j.jembe.2009.09.013
    [49] Benyoucef I, Blandin E, Lerouxel A, et al. Microphytobenthos interannual variations in a north-European estuary (Loire estuary, France) detected by visible-infrared multispectral remote sensing[J]. Estuarine, Coastal and Shelf Science, 2014, 136: 43−52. doi: 10.1016/j.ecss.2013.11.007
    [50] 张忍顺, 王雪瑜. 江苏省淤泥质海岸潮沟系统[J]. 地理学报, 1991, 46(2): 195−206.

    Zhang Renshun, Wang Xueyu. Tidal creek system on tidal mud flat of Jiangsu province[J]. Acta Geographica Sinica, 1991, 46(2): 195−206.
    [51] 王青, 骆梦, 邱冬冬, 等. 滨海盐沼水文特征对盐地碱蓬定植过程的影响[J]. 自然资源学报, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207

    Wang Qing, Luo Meng, Qiu Dongdong, et al. Effect of hydrological characteristics on the recruitment of Suaeda salsa in coastal salt marshes[J]. Journal of Natural Resources, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207
    [52] van der Wal D, Wielemaker-van den Dool A, Herman P M J. Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems[J]. Ecosystems, 2010, 13(2): 338−351. doi: 10.1007/s10021-010-9322-9
    [53] Ribeiro L, Brotas V, Rincé Y, et al. Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary[J]. Journal of Phycology, 2013, 49(2): 258−270. doi: 10.1111/jpy.12031
    [54] 葛嘉欣. 黄河三角洲典型潮沟形态特征对潮滩植被和土壤空间分布的影响[D]. 烟台: 鲁东大学, 2023.

    Ge Jiaxin. Influence of typical tidal creek morphological characteristics on the spatial distribution of tidal flats vegetation and soil in the Yellow River Delta[R]. Yantai: Ludong University, 2023.
    [55] Vu H D, Buck J, Wieski K, et al. Crab driven tidal creek formation in sinking salt marshes[C]//Proceedings of the 96th ESA Annual Convention 2011. 2011. (查阅网上资料, 未找到对应的出版信息, 请确认)
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-27
  • 修回日期:  2025-03-11
  • 网络出版日期:  2025-04-23

目录

    /

    返回文章
    返回