留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上游径流对长江口盐水上溯距离影响研究

王辉 黄睿 张蔚 陈中 王晓光 李昊 曾建峰

王辉,黄睿,张蔚,等. 上游径流对长江口盐水上溯距离影响研究[J]. 海洋学报,2025,47(x):1–11
引用本文: 王辉,黄睿,张蔚,等. 上游径流对长江口盐水上溯距离影响研究[J]. 海洋学报,2025,47(x):1–11
Wang Hui,Huang Rui,Zhang Wei, et al. Study on the impact of upstream discharge on saltwater intrusion distance in the Yangtze Estuary[J]. Haiyang Xuebao,2025, 47(x):1–11
Citation: Wang Hui,Huang Rui,Zhang Wei, et al. Study on the impact of upstream discharge on saltwater intrusion distance in the Yangtze Estuary[J]. Haiyang Xuebao,2025, 47(x):1–11

上游径流对长江口盐水上溯距离影响研究

基金项目: 国家自然科学基金(U2040203,42206165)。
详细信息
    作者简介:

    王辉(2000—),男,河南省邓州市人,主要从事河口海岸水动力研究。E-mail:2742806650@qq.com

    通讯作者:

    黄睿(1989—),男,安徽省芜湖市人,副研究员。主要从事河口海岸水动力与泥沙运动研究。E-mail: ruihuang@hhu.edu.cn

  • 中图分类号: P731.2

Study on the impact of upstream discharge on saltwater intrusion distance in the Yangtze Estuary

  • 摘要: 长江口盐水入侵严重影响上游供水安全、农业灌溉和生态环境健康,其中在径流和潮动力的相互作用下盐水上溯距离一直受到较多的关注,然而径潮相互作用下盐水上溯距离研究并不充分。本文利用MIKE 3水动力学模型建立了长江口三维水动力和盐度数学模型,采用2016年长江口实测潮位、流速、流向和盐度资料对长江口三维水动力和盐度数学模型进行了验证,验证结果显示模拟值和实测值较为吻合,表明本文所建立的长江口三维水动力和盐度数学模型可以较好的模拟长江口附近的水动力和盐度特性。为了探究上游径流对长江口盐水上溯距离的影响,本文设置了长江口上游1500050000 m3/s中8个径流量,分别模拟研究了上游不同径流量对长江口南支-北港、南支-南港-北槽和南支-南港-南槽三条航道盐水入侵上溯距离的影响。模拟结果表明,三条航道的盐水入侵程度显著依赖于潮汐动力,大潮潮动力强,外海与北支盐水倒灌的盐水入侵都强于小潮期间,盐水上溯距离整体大于小潮期间。当径流较低时,北支存在盐水倒灌现象,也会增加盐水入侵距离。同时分析了不同径流条件下三条航道盐度垂向分布和层化现象,并分别建立了上游径流量和三条航道盐水上溯距离的相关关系。研究结果可对长江河口“压咸补淡”和物质输运等研究提供一定的参考。
  • 图  1  长江河口测站点分布图

    Fig.  1  Map of monitoring site distribution at the Yangtze River Estuary

    图  2  模型计算区域与网格

    Fig.  2  Modeling domain and grid

    图  3  潮位验证图(a)洪季和(b)枯季

    Fig.  3  Tidal Level Validation Figures (a) Flood season; (b) Dry season

    图  4  NGN4S测站流速流向验证图

    Fig.  4  NGN4S Station flow velocity and direction validation figure

    图  5  Y11测站流速流向验证图

    Fig.  5  Y11 Station flow velocity and direction validation figure

    图  6  盐度验证图

    Fig.  6  Salinity station verification figure

    图  7  不同径流量条件下大潮期间不同时刻三条航道盐度垂向分布(南支-北港:15000 m3/s(a),50000 m3/s(b);南支-南港-北槽:15000 m3/s(c),50000 m3/s(d);南支-南港-南槽:15000 m3/s(e),50000 m3/s(f))

    Fig.  7  Vertical Salinity Distribution at Different Times during Spring Tides under Various Discharge Conditions in Three Channels (the South Branch-North Port:15000 m3/s (a), 50000 m3/s (b).the South Branch-South Port-North Channel: 15000 m3/s (c), 50000 m3/s (d). the South Branch-South Port-South Channel: 15000 m3/s (e), 50000 m3/s (f))

    图  8  不同径流量条件下小潮期间不同时刻三条航道盐度垂向分布(南支-北港:15000 m3/s(a),50000 m3/s(b);南支-南港-北槽:15000 m3/s(c),50000 m3/s(d);南支-南港-南槽:15000 m3/s(e),50000 m3/s(f))

    Fig.  8  Vertical Salinity Distribution at Different Times during Neap Tides under Various Discharge Conditions in Three Channels (the South Branch-North Port:15000 m3/s (a), 50000 m3/s (b).the South Branch-South Port-North Channel: 15000 m3/s (c), 50000 m3/s (d). the South Branch-South Port-South Channel: 15000 m3/s (e), 50000 m3/s (f))

    图  9  不同径流量条件下测站CS3S潮周期盐度变化

    Fig.  9  Salinity variations during tidal cycles at station CS3S under Various Discharge Conditions

    图  10  盐水上溯距离与上游径流量的相关关系图(大潮期间(a),小潮期间(b))

    Fig.  10  Correlation Diagram Illustrating the Relationship Between Saline Water Intrusion Distance and Upstream Discharge Volume (Spring Tides(a), Neap Tides(b))

    表  1  模型参数

    Tab.  1  Model parameters

    模型参数配置
    流量边界逐日实测时间序列文件
    潮位边界TPXO8获取
    粗糙度高度0.003~0.005 m
    水平涡流粘度0.28
    水平扩散比例因子0.28
    垂向扩散比例因子0.1
    盐度边界(上游/下游)0 / 32
    下载: 导出CSV

    表  2  大潮和小潮期间径流量和盐水上溯距离对应关系

    Tab.  2  Relationship between Discharge and Salt Water Intrusion Distance during Spring and Neap Tides

    流量Q(m3/s)大潮期间盐水上溯距离L (km)小潮期间盐水上溯距离L (km)
    南支-北港南支-南港-北槽南支-南港-南槽南支-北港南支-南港-北槽南支-南港-南槽
    15000140(69+71)136(66+70)132(66+66)134(69+65)129(67+62)128(67+61)
    20000137(57+80)115(50+65)112(50+62)104(41+63)7378
    22500102(44+58)73(18+55)69(18+51)70(13+57)4942
    2500089(33+56)5345413940
    2750072(20+52)5143293939
    30000444941283839
    40000354638263538
    50000334634243236
      注:括号内分别为北支盐水倒灌距离与外海盐水入侵距离,括号外为两者距离之和。
    下载: 导出CSV
  • [1] Woodroffe C D, Nicholls R J, Saito Y, et al. Landscape variability and the response of Asian megadeltas to environmental change[M]//Harvey N. Global Change and Integrated Coastal Management: The Asia-Pacific Region. Dordrecht: Springer, 2006: 277−314.
    [2] 王玉琦, 李铖, 刘安琪, 等. 2022年长江口夏季咸潮入侵及影响机制研究[J]. 人民长江, 2023, 54(4): 7−14.

    Wang Yuqi, Li Cheng, Liu Anqi, et al. Dynamic mechanism of saltwater intrusion at Yangtze River estuary in summer, 2022[J]. Yangtze River, 2023, 54(4): 7−14.
    [3] White I, Falkland T. Management of freshwater lenses on small Pacific islands[J]. Hydrogeology Journal, 2010, 18(1): 227−246. doi: 10.1007/s10040-009-0525-0
    [4] Xu Ting. Study on hydrodynamics and salinity environment after a large-scale reclamation project in the Oujiang River Estuary[M]//Zhang Lei, Xie Liquan. Modeling and Computation in Engineering III. London: CRC Press, 2014. (查阅网上资料, 未找到本条文献页码, 请确认)
    [5] Weston N B, Dixon R E, Joye S B. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G1): G01009.
    [6] 黄睿, 张庆河, 张金凤, 等. 双层横向振荡格栅紊流特性的实验研究[J]. 水动力学研究与进展, 2022, 37(2): 244−251.

    Huang Rui, Zhang Qinghe, Zhang Jinfeng, et al. Experimental research on turbulence characteristics of double layer transverse oscillating grid[J]. Chinese Journal of Hydrodynamics, 2022, 37(2): 244−251.
    [7] 吴天亮, 戴志军, 王日明, 等. 淹水时长与盐度对桐花树胚胎萌根与生长发育过程的影响研究[J]. 海洋学报, 2023, 45(11): 101−111.

    Wu Tianliang, Dai Zhijun, Wang Riming, et al. The impacts of submergence duration and salinity on the germination and growth process of Aegiceras corniculatum radicles[J]. Haiyang Xuebao, 2023, 45(11): 101−111.
    [8] Yuan Yirang, Liang Dong, Rui Hongxing. The numerical simulation and analysis of three-dimensional seawater intrusion and protection projects in porous media[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(1): 92−107. doi: 10.1007/s11433-009-0013-5
    [9] 沈焕庭, 茅志昌, 朱建荣. 长江河口盐水入侵[M]. 北京: 海洋出版社, 2003.

    Shen Huanting, Mao Zhichang, Zhu Jianrong. Saltwater Intrusion in the Changjiang Estuary[M]. Beijing: China Ocean Press, 2003.
    [10] Sun Zhaohua, Fan Jiewei, Yan Xin, et al. Analysis of critical river discharge for saltwater intrusion control in the upper South Branch of the Yangtze River Estuary[J]. Journal of Geographical Sciences, 2020, 30(5): 823−842. doi: 10.1007/s11442-020-1757-0
    [11] 乔红杰, 刘大伟, 闻卫东, 等. 2022年长江口北支咸水倒灌传播特征分析[J]. 人民长江, 2023, 54(2): 63−69.

    Qiao Hongjie, Liu Dawei, Wen Weidong, et al. Diffusion characteristics of saltwater intrusion in North Branch of Yangtze River Estuary in 2022[J]. Yangtze River, 2023, 54(2): 63−69.
    [12] Eslami S, Hoekstra P, Minderhoud P S J, et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors[J]. Communications Earth & Environment, 2021, 2(1): 142.
    [13] Mahmuduzzaman M, Ahmed Z U, Nuruzzaman A K M, et al. Causes of salinity intrusion in coastal belt of Bangladesh[J]. International Journal of Plant Research, 2014, 4(4A): 8−13.
    [14] Rice K C, Hong Bo, Shen Jian. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA[J]. Journal of Environmental Management, 2012, 111: 61−69.
    [15] Vijith V, Sundar D, Shetye S R. Time-dependence of salinity in monsoonal estuaries[J]. Estuarine, Coastal and Shelf Science, 2009, 85(4): 601−608. doi: 10.1016/j.ecss.2009.10.003
    [16] 赵雪峰, 尹小玲. 潮汐强度对河口盐水入侵影响的数值模型研究[J]. 水动力学研究与进展, 2017, 32(6): 756−763.

    Zhao Xuefeng, Yin Xiaoling. Numerical model for effect of tide strength on estuarine salt intrusion[J]. Chinese Journal of Hydrodynamics, 2017, 32(6): 756−763.
    [17] Wang Jie, Kuang Cuiping, Chen Kuo, et al. Wave–current interaction by Typhoon Fongwong on saline water intrusion and vertical stratification in the Yangtze River Estuary[J]. Estuarine, Coastal and Shelf Science, 2022, 279: 108138. doi: 10.1016/j.ecss.2022.108138
    [18] 鲍道阳, 朱建荣. 近60年来长江河口河势变化及其对水动力和盐水入侵的影响Ⅲ. 盐水入侵[J]. 海洋学报, 2017, 2017,39(4): 1−15.

    Bao Daoyang, Zhu Jianrong. The effects of river regime changes in the Changjiang Estuary on hydrodynamics and salinity intrusion in the past 60 years Ⅲ. Saltwater intrusion[J]. Haiyang Xuebao, 2017, 2017,39(4): 1−15.
    [19] Xu Zhi, Ma Jing, Wang Hao, et al. River discharge and saltwater intrusion level study of Yangtze River Estuary, China[J]. Water, 2018, 10(6): 683. doi: 10.3390/w10060683
    [20] 仇威, 朱建荣. 持续强北风天气下长江口盐水入侵对径流量的响应[J]. 华东师范大学学报(自然科学版), 2023(3): 132−146.

    Qiu Wei, Zhu Jianrong. Responses of saltwater intrusion in the Changjiang Estuary to various river discharge under a persistent and strong northerly wind[J]. Journal of East China Normal University (Natural Science), 2023(3): 132−146.
    [21] 仇威. UnFECOM模式在长江河口盐水入侵数值模拟中的应用[D]. 上海: 华东师范大学, 2023.

    Qiu Wei. Application of UnFECOM model in numerical simulation of saltwater intrusion in the Changjiang Estuary[D]. Shanghai: East China Normal University, 2023.
    [22] 侯成程. 长江潮流界和潮区界以及河口盐水入侵对径流变化响应的数值研究[D]. 上海: 华东师范大学, 2013.

    Hou Chengcheng. Numerical study on the tidal current limit and tidal limit in the Changjiang River and the Response of saltwater intrusion in the Changjiang Estuary to the river discharge change[D]. Shanghai: East China Normal University, 2013.
    [23] 朱建荣, 吴辉, 李路, 等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010(4): 1−6,25.

    Zhu Jianrong, Wu Hui, Li Lu, et al. Saltwater intrusion in the Changjiang Estuary in the extremely drought hydrological year 2006[J]. Journal of East China Normal University (Natural Science), 2010(4): 1−6,25.
    [24] Dai Zhijun, Chu Ao, Stive M, et al. Unusual salinity conditions in the Yangtze Estuary in 2006: impacts of an extreme drought or of the Three Gorges Dam?[J]. Ambio, 2011, 40(5): 496−505. doi: 10.1007/s13280-011-0148-2
    [25] Chen Qing, Zhu Jianrong, Lyu Hanghang, et al. Impacts of topography change on saltwater intrusion over the past decade in the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2019, 231: 106469. doi: 10.1016/j.ecss.2019.106469
    [26] 李林江, 朱建荣. 冬季北风风速对长江河口盐水入侵的影响[J]. 海洋学报, 2021, 43(10): 10−22.

    Li Linjiang, Zhu Jianrong. The effects of north wind speed in winter on saltwater intrusion in the Changjiang Estuary[J]. Haiyang Xuebao, 2021, 43(10): 10−22.
    [27] 徐志, 戴会超, 高希超, 等. 长江口盐水入侵对径流变异和海平面变化的响应[J]. 水利水电科技进展, 2023, 43(3): 15−21.

    Xu Zhi, Dai Huichao, Gao Xichao, et al. Response of saltwater intrusion to runoff variability and sea level change in Yangtze River Estuary[J]. Advances in Science and Technology of Water Resources, 2023, 43(3): 15−21.
    [28] Kuang Cuiping, Chen Kuo, Wang Jie, et al. Responses of hydrodynamics and saline water intrusion to typhoon Fongwong in the North Branch of the Yangtze River Estuary[J]. Applied Sciences, 2021, 11(19): 8986. doi: 10.3390/app11198986
    [29] 陈维, 匡翠萍, 顾杰, 等. 长江口盐水入侵对海平面上升的响应特征[J]. 水利水运工程学报, 2018(1): 58−65.

    Chen Wei, Kuang Cuiping, Gu Jie, et al. Responses of saline water intrusion to sea level rise in the Yangtze Estuary[J]. Hydro-Science and Engineering, 2018(1): 58−65.
    [30] 王绍祥, 朱建荣. 不同潮型和风况下青草沙水库取水口盐水入侵来源[J]. 华东师范大学学报(自然科学版), 2015(4): 65−76.

    Wang Shaoxiang, Zhu Jianrong. Saltwater intrusion sources at the water intake of Qingcaosha reservoir in different tidal pattern and wind case[J]. Journal of East China Normal University (Natural Science), 2015(4): 65−76.
    [31] DHI. Mike 21 & Mike 3 flow model FM hydrodynamic and transport module scientific documentation[R]. Demark: DHI Water & Environment, 2009.
    [32] Murphy A H. Skill scores based on the mean square error and their relationships to the correlation coefficient[J]. Monthly Weather Review, 1988, 116(12): 2417−2424. doi: 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
    [33] 严鑫, 孙昭华, 谢翠松, 等. 基于经验模型的长江口南支上段压咸临界流量[J]. 地理学报, 2019, 74(5): 935−947. doi: 10.11821/dlxb201905008

    Yan Xin, Sun Zhaohua, Xie Cuisong, et al. Estimation of critical discharge for saltwater intrusion in the upper south branch of the Yangtze River Estuary using empirical models[J]. Acta Geographica Sinica, 2019, 74(5): 935−947. doi: 10.11821/dlxb201905008
    [34] 朱建荣, 吴辉, 李路, 等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010(4): 1−6, 25.

    Zhu Jianrong, Wu Hui, Li Lu, et al. Saltwater intrusion in the Changjiang Estuary in the extremely drought hydrological year 2006[J]. Journal of East China Normal University (Natural Science), 2010(4): 1−6, 25. (查阅网上资料, 本条文献与第23条重复, 请确认)
    [35] 周春煦. 长江口盐水入侵特征及规律[J]. 长江科学院院报, 2018, 35(12): 28−33. doi: 10.11988/ckyyb.20170434

    Zhou Chunxu. Characteristic and Law of Saltwater Intrusion in Yangtze River Estuary[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(12): 28−33. doi: 10.11988/ckyyb.20170434
    [36] 王雅君. 长江口北槽混合层化特征及其对悬沙输移的影响[D]. 上海: 华东师范大学, 2022.

    Wang Yajun. Characteristics of mixing and stratification and its influence on suspended sediment transport in the north passage of the Yangtze Estuary[D]. Shanghai: East China Normal University, 2022.
    [37] 熊龙兵, 浦祥, 时钟, 等. 潮汐应变对长江口北槽枯季湍流混合与层化的影响[J]. 海洋工程, 2014, 32(4): 41−57.

    Xiong Longbing, Pu Xiang, Shi Zhong, et al. Effect of tidal straining on turbulent mixing and stratification in the dry season within the North Passage of the Changjiang River estuary[J]. The Ocean Engineering, 2014, 32(4): 41−57.
    [38] 沈焕庭, 茅志昌, 顾玉亮. 东线南水北调工程对长江口咸水入侵影响及对策[J]. 长江流域资源与环境, 2002, 11(2): 150−154. doi: 10.3969/j.issn.1004-8227.2002.02.011

    Shen Huanting, Mao Zhichang, Gu Yuliang. Impact of south-north water transfer (east route) on saltwater intrusion in the Changjiang estuary with consideration of its countermeasures[J]. Resources and Environment in the Yangtze Basin, 2002, 11(2): 150−154. doi: 10.3969/j.issn.1004-8227.2002.02.011
    [39] 顾玉亮, 吴守培, 乐勤. 北支盐水入侵对长江口水源地影响研究[J]. 人民长江, 2003, 34(4): 1−3,16. doi: 10.3969/j.issn.1001-4179.2003.04.001

    Gu Yuliang, Wu Shoupei, Le Qin. Impact of intruded saline water via north branch of the Yangtze river on water source areas in the estuary area[J]. Yangtze River, 2003, 34(4): 1−3,16. doi: 10.3969/j.issn.1001-4179.2003.04.001
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  23
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-06
  • 网络出版日期:  2025-01-09

目录

    /

    返回文章
    返回