留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐温耦合作用下深海软黏土动态流变特性研究

王亚 常留成 王红雨 王勇

王亚,常留成,王红雨,等. 盐温耦合作用下深海软黏土动态流变特性研究[J]. 海洋学报,2025,47(x):1–9
引用本文: 王亚,常留成,王红雨,等. 盐温耦合作用下深海软黏土动态流变特性研究[J]. 海洋学报,2025,47(x):1–9
Wang Ya,Chang Liucheng,Wang Hongyu, et al. Dynamic Rheological Properties of Deep-Sea Soft Clay under the Coupled Influence of Temperature and Salinity[J]. Haiyang Xuebao,2025, 47(x):1–9
Citation: Wang Ya,Chang Liucheng,Wang Hongyu, et al. Dynamic Rheological Properties of Deep-Sea Soft Clay under the Coupled Influence of Temperature and Salinity[J]. Haiyang Xuebao,2025, 47(x):1–9

盐温耦合作用下深海软黏土动态流变特性研究

基金项目: 国家自然科学基金重大仪器专项(52127815);宁夏回族自治区自然科学基金项目(2023AAC03387);。
详细信息
    作者简介:

    王亚(1989—),女,贵州遵义人,从事软土流变研究。Email:mayr1101@163.com

    通讯作者:

    王红雨(1962—),男,宁夏银川人,教授,博士,主要从事水工及岩土方面的科研工作

Dynamic Rheological Properties of Deep-Sea Soft Clay under the Coupled Influence of Temperature and Salinity

  • 摘要: 为保障海洋动荷载(波浪、洋流、地震)长期作用下海底结构物的稳定性,需明确海床表层深海软黏土的流变特性。本研究以深海软黏土为对象,采用应变控制模式流变仪,开展不同盐温条件下的动态剪切试验,分析储能模量(G')、损耗模量(G'')和交叉应变的变化规律,结合液塑限试验和自由沉降试验,揭示盐温条件对深海软黏土流变行为的影响机制。试验结果表明,随 NaCl 溶液浓度升高与温度降低,深海软黏土的液限、塑限、沉降体积、G'G''及交叉应变均呈增大趋势,该现象与黏土颗粒絮凝结构发育及双电层厚度减小直接相关;随剪切应变增加,深海软黏土呈现典型两步屈服特征: 第一屈服发生于模量首次下降阶段(对应絮凝网络破坏),第二屈服出现于模量二次下降阶段(对应剪切诱导形成的中空圆柱形结构破碎),两屈服阶段间的平台期由中空圆柱形结构的抗剪切作用所致。本研究成果可为超深海工程基础设计与稳定性评估提供理论依据。
  • 图  1  深海软黏土级配曲线

    Fig.  1  Particle size distribution of deep-sea soft soil

    图  2  Anton Paar MCR302流变仪实物图:(a)主机;(b)夹具

    Fig.  2  Physical picture of Anton Paar MCR302 rheometer: (a) Main unit; (b) Fixture

    图  3  深海软黏土液、塑限变化曲线:(a)T= 2℃;(b)CNaCl =0.3 mol/L

    Fig.  3  Changes curve of liquid and plastic limits in deep-sea soft soil: (a)T= 2℃;(b)CNaCl =0.3 mol/L

    图  4  深海软黏土自由沉降的时程曲线

    Fig.  4  Time-history curves of free settlement of deep-sea soft soil

    图  5  不同NaCl溶液浓度下深海软黏土的模量与剪切应变曲线

    Fig.  5  Modulus and shear strain curves of deep-sea soft soil under different CNaC

    图  6  交叉应变与NaCl溶液浓度的关系曲线

    Fig.  6  Curve between cross-strain and CNaC

    图  7  不同温度下深海软黏土的模量与剪切应变曲线

    Fig.  7  Modulus and shear strain curves of deep-sea soft soil at different temperatures:

    图  8  交叉应变与温度的关系曲线

    Fig.  8  Relationship curve between cross strain and temperature

    图  9  深海软黏土两步屈服现象(T=12℃,CNacl=0.3 mol/L, Shakeel等 [26]

    Fig.  9  Two-step yield phenomenon (T=12℃,CNacl=0.3 mol/L, Sourced by Shakeel et al [26]).

    图  10  不同温度下黏粒表面双电层厚度随NaCl溶液浓度变化曲线

    Fig.  10  Variation curves of the thickness of the double electric layer with the concentration of NaCl solution

    表  1  深海软黏土的基本物理指标

    Tab.  1  Basic Physical Indicators of deep-sea soft soil

    天然含
    水率/%
    孔隙比比重液限/%塑限/%塑性
    指数
    颗粒组成/%
    砂粒粉粒黏粒
    74.92.12.7660.840.820.89.337.852.9
    下载: 导出CSV

    表  2  深海软黏土的矿物成分

    Tab.  2  Mineral Compositions of deep-sea soft soil

    非黏土矿物含量(51%)/% 黏土矿物含量(49%)/%
    石英 方解石 钾长石 斜长石 伊蒙混层 伊利石 蒙脱石 绿泥石 高岭石
    34 12 1 4 4.2 23 60.8 5 7
    下载: 导出CSV

    表  3  深海软黏土动态剪切试验方案

    Tab.  3  Dynamic shear test scheme for deep-sea soft soil

    温度T/℃NaCl溶液浓CNaCl /mol/L频率/Hz含水率/%
    20、0.1、0.2、0.3174.9%
    70、0.1、0.2、0.3
    120、0.1、0.2、0.3
    170、0.1、0.2、0.3
    下载: 导出CSV
  • [1] 公衍芬, 杨文斌, 谭树东. 南海油气资源综述及开发战略设想[J]. 海洋地质与第四纪地质, 2012, 32(5): 137−147.

    Gong Yanfen, Yang Wenbin, Tan Shudong. Oil and gas resources in the South China Sea and its development strategy: a review[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 137−147.
    [2] 张荷霞, 刘永学, 李满春, 等. 南海中南部海域油气资源开发战略价值评价[J]. 资源科学, 2013, 35(11): 2142−2150.

    Zhang Hexia, Liu Yongxue, Li Manchun, et al. Strategic value assessment of oil and gas exploitation in the central and southern South China Sea[J]. Resources Science, 2013, 35(11): 2142−2150.
    [3] 王奕霖, 李飒, 段贵娟, 等. 深海超软土动剪切模量与阻尼比特性研究[J]. 岩土力学, 2023, 44(11): 3261−3271.

    Wang Yilin, Li Sa, Duan Guijuan, et al. Dynamic shear modulus and damping ratio of deep-sea ultra-soft soil[J]. Rock and Soil Mechanics, 2023, 44(11): 3261−3271.
    [4] 邹大鹏, 卢博, 阎贫, 等. 南海北部海底沉积物在温度变化下的三种声速类型[J]. 地球物理学报, 2012, 55(3): 1017−1024. doi: 10.6038/j.issn.0001-5733.2012.03.032

    Zou Dapeng, Lu Bo, Yan Pin, et al. Three kinds of acoustic speeds of seafloor sediments in the northern South China Sea with temperature variation[J]. Chinese Journal of Geophysics, 2012, 55(3): 1017−1024. doi: 10.6038/j.issn.0001-5733.2012.03.032
    [5] 谭俊峰, 宋晓阳, 张飞, 等. 南海北部深海观测站点海洋环境特征分析[J]. 海洋湖沼通报, 2023, 45(6): 109−115.

    Tan Junfeng, Song Xiaoyang, Zhang Fei, et al. Analyses of marine environment characteristics of the deep-sea observation sites in northern South China Sea[J]. Transactions of Oceanology and Limnology, 2023, 45(6): 109−115.
    [6] 刘杰锋, 李飒, 段贵娟, 等. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型[J]. 岩土力学, 2023, 44(S1): 341−349.

    Liu Jiefeng, Li Sa, Duan Guijuan, et al. Phase transition properties and rheological model of soft clay in South China Sea in steady rheological tests[J]. Rock and Soil Mechanics, 2023, 44(S1): 341−349.
    [7] Nie Sihang, Jiang Qin, Cui Li, et al. Investigation on solid-liquid transition of soft mud under steady and oscillatory shear loads[J]. Sedimentary Geology, 2020, 397: 105570. doi: 10.1016/j.sedgeo.2019.105570
    [8] 郭兴森, 年廷凯, 范宁, 等. 低温环境下南海海底泥流的流变试验及模型[J]. 岩土工程学报, 2019, 41(1): 161−167. doi: 10.11779/CJGE201901018

    Guo Xingsen, Nian Tingkai, Fan Ning, et al. Rheological tests and model for submarine mud flows in South China Sea under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 161−167. doi: 10.11779/CJGE201901018
    [9] Guo Xingsen, Nian Tingkai, Wang Zhongtao, et al. Low-temperature rheological behavior of submarine mudflows[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2020, 146(2): 04019043. doi: 10.1061/(ASCE)WW.1943-5460.0000551
    [10] 李家平, 朱克超, 周旋, 等. 深海富稀土沉积物的流变特性研究[J]. 岩土力学, 2022, 43(S1): 348−356.

    Li Jiaping, Zhu Kechao, Zhou Xuan, et al. Rheological properties of REY-rich deep-sea sediments[J]. Rock and Soil Mechanics, 2022, 43(S1): 348−356.
    [11] Ying Zi, Cui Yujun, Duc M, et al. Salinity effect on the liquid limit of soils[J]. Acta Geotechnica, 2021, 16(4): 1101−1111. doi: 10.1007/s11440-020-01092-7
    [12] Lin Yuan, Phan-Thien N, Lee J B P, et al. Concentration dependence of yield stress and dynamic moduli of kaolinite suspensions[J]. Langmuir, 2015, 31(16): 4791−4797. doi: 10.1021/acs.langmuir.5b00536
    [13] Jeong S W, Locat J, Leroueil S, et al. Rheological properties of fine-grained sediment: the roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 47(10): 1085−1100. doi: 10.1139/T10-012
    [14] 中华人民共和国住房和城乡建设部. GB/T 50123-2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50123-2019, Standard for geotechnical testing method[S]. Beijing: China Planning Press, 2019.
    [15] 中华人民共和国建设部. GB/T 50145-2007, 土的工程分类标准[S]. 北京: 中国计划出版社, 2008.

    Ministry of Construction of the People’s Republic of China. GB/T 50145-2007, Standard for engineering classification of soil[S]. Beijing: China Planning Press, 2008.
    [16] 罗鸿禧. 南海海洋土的成份结构和物化性质[J]. 岩土力学, 1989(4): 45−53.

    Luo Hongxi. The composition microstructure and physico-chemical properties of marine soil in South China Sea[J]. Rock and Soil Mechanics, 1989(4): 45−53.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.4-2007, 海洋监测规范 第4部分: 海水分析[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. GB 17378.4-2007, The specification for marine monitoring - part 4: seawater analysis[S]. Beijing: Standards Press of China, 2008.
    [18] 苗永红, 陆强, 朱杰, 等. 海水盐度对黏土矿物基本特性影响规律研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(2): 72−77.

    Miao Yonghong, Lu Qiang, Zhu Jie, et al. Research on influence of seawater salinity on basic characteristics of clay minerals[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(2): 72−77.
    [19] 邵玉娴, 施斌, 刘春, 等. 黏性土水理性质温度效应研究[J]. 岩土工程学报, 2011, 33(10): 1576−1582.

    Shao Yuxian, Shi Bin, Liu Chun, et al. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1576−1582.
    [20] 胡士骏, 陈盼, 韦昌富, 等. NaCl溶液作用下深海沉积物基本物理力学响应[J]. 岩土工程学报, 2021, 43(S2): 142−145. doi: 10.11779/CJGE2021S2034

    Hu Shijun, Chen Pan, Wei Changfu, et al. Effect of NaCl solution on primary physical-mechanical behaviors of deep-sea sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 142−145. doi: 10.11779/CJGE2021S2034
    [21] Mishra A K, Ohtsubo M, Li L Y, et al. Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures[J]. Environmental Geology, 2009, 57(5): 1145−1153. doi: 10.1007/s00254-008-1411-0
    [22] Shakeel A, Kirichek A, Chassagne C. Rheological analysis of mud from Port of Hamburg, Germany[J]. Journal of Soils and Sediments, 2020, 20(6): 2553−2562. doi: 10.1007/s11368-019-02448-7
    [23] Ahuja A, Gamonpilas C. Dual yielding in capillary suspensions[J]. Rheologica Acta, 2017, 56(10): 801−810. doi: 10.1007/s00397-017-1040-1
    [24] Shukla A, Arnipally S, Dagaonkar M, et al. Two-step yielding in surfactant suspension pastes[J]. Rheologica Acta, 2015, 54(5): 353−364. doi: 10.1007/s00397-015-0845-z
    [25] 李政, 蒋明镜, 王思远. 不同盐度下深海能源黏土宏微观力学特性离散元分析[J]. 岩土工程学报, 2025, 47(5): 926−935.

    Li Zheng, Jiang Mingjing, Wang Siyuan. Discrete element analysis of macro-and micro-mechanical properties of methane hydrate-bearing clay under different salinities[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 926−935.
    [26] Shakeel A, Maciver M R, van Kan P J M, et al. A rheological and microstructural study of two-step yielding in mud samples from a port area[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126827. doi: 10.1016/j.colsurfa.2021.126827
    [27] 杨靓青, 王初, 任杰, 等. 细颗粒泥沙絮凝现象研究综述[J]. 水道港口, 2008, 29(3): 158−165. doi: 10.3969/j.issn.1005-8443.2008.03.002

    Yang Liangqing, Wang Chu, Ren Jie, et al. Review on flocculation of fine suspended sediments[J]. Journal of Waterway and Harbor, 2008, 29(3): 158−165. doi: 10.3969/j.issn.1005-8443.2008.03.002
    [28] Mitchell J K, Soga K. Fundamentals of Soil Behavior[M]. 3rd ed. Hoboken: John Wiley & Sons, 2005.
    [29] Hewage S A, Tang Chaosheng, Mehta Y, et al. Investigating cracking behavior of saline clayey soil under cyclic freezing-thawing effects[J]. Engineering Geology, 2023, 326: 107319. doi: 10.1016/j.enggeo.2023.107319
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-01
  • 修回日期:  2025-09-04
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回