留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的黄河口邻近海域MODIS叶绿素a浓度遥感反演

郝佳雯 刘会会 高志强 王德 王跃启

郝佳雯,刘会会,高志强,等. 基于机器学习的黄河口邻近海域MODIS叶绿素a浓度遥感反演[J]. 海洋学报,2025,47(x):1–14
引用本文: 郝佳雯,刘会会,高志强,等. 基于机器学习的黄河口邻近海域MODIS叶绿素a浓度遥感反演[J]. 海洋学报,2025,47(x):1–14
Hao Jiawen,Liu Huihui,Gao Zhiqiang, et al. Machine learning-based remote sensing retrieval model for MODIS chlorophyll-a concentration in adjacent waters of the Yellow River Estuary[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: Hao Jiawen,Liu Huihui,Gao Zhiqiang, et al. Machine learning-based remote sensing retrieval model for MODIS chlorophyll-a concentration in adjacent waters of the Yellow River Estuary[J]. Haiyang Xuebao,2025, 47(x):1–14

基于机器学习的黄河口邻近海域MODIS叶绿素a浓度遥感反演

基金项目: 山东省自然科学基金项目(ZR2022MD028);国家自然科学基金重点项目(42030402);中国科学院烟台海岸带研究所前沿部署项目(YIC-E351030601);国家自然科学基金委黄河口科学考察项目(42149301)。
详细信息
    作者简介:

    郝佳雯(2002—),女,山东省聊城市人,研究方向:海洋环境遥感。E-mail:haojiawen23@mails.ucas.ac.cn

    通讯作者:

    王跃启(1984—),男,山东省济宁人,副研究员,研究方向:海洋生态环境遥感。E-mail: yueqiwang@yic.ac.cn

Machine learning-based remote sensing retrieval model for MODIS chlorophyll-a concentration in adjacent waters of the Yellow River Estuary

  • 摘要: 海洋叶绿素a(Chl-a)浓度是海洋浮游植物生物量的重要表征,是海洋生态环境变化的直观体现,准确、高效的估算水体Chl-a浓度是海洋相关研究的基础。卫星遥感技术可用于大范围、高频次的Chl-a浓度监测,为我们理解海洋生态环境变化提供了重要支撑。但是,由于复杂的生物光学特征,近岸浑浊水体Chl-a浓度的遥感反演结果具有很大的不确定性,需要我们利用大量现场实测数据进行验证和优化。本文基于2010-2023年间45个航次的表层Chl-a浓度实测数据,利用MODIS同步卫星遥感反射率数据,构建了黄河口邻近海域Chl-a浓度的机器学习遥感反演模型。结果表明:与传统的全球标准算法和以往的区域算法相比,机器学习算法获得了更高的反演精度;其中,高斯过程模型表现最佳(R2 = 0.62, RMSE = 0.21 mg/m3),结果很好的呈现了该海域Chl-a浓度的时空变化特征。总体来看,该海域Chl-a浓度在空间上呈现近岸高于离岸的特征,季节变化呈现较为明显的夏高冬低的单峰结构,2003−2023年间平均Chl-a浓度以每年0.02 mg/m3的速率增加。研究结果丰富了近岸海域Chl-a浓度遥感反演算法,拓展了机器学习算法的遥感应用,为黄河口邻近海域海洋生态环境评估提供了方法和数据支撑。
  • 图  1  研究区及现场实测Chl-a站点分布图(其中绿色圆点代表所有站点,红色圆点代表实测数据与遥感数据相匹配站点)

    Fig.  1  Study area and the distribution of in situ Chl-a sites (Green dots represent all of the in situ sites and red dots represent match-ups between in situ measured and remotely sensed datasets)

    图  2  方法流程图

    Fig.  2  The flowchart of methodology

    图  3  泰勒图 (绿色圆点为原位实测数据,红色点为各模型的结果)

    Fig.  3  Taylor diagram (Green dots are in situ measured data, red dots are satellite-retrieval models)

    图  4  9个方法反演的Chl-a浓度值与实测Chl-a浓度值的散点图(其中X 坐标是模型反演Chl-a浓度值,Y 坐标是实测Chl-a浓度值,均以mg/m3 为单位)

    Fig.  4  Scatterplots of Chl-a concentration values between the 9 satellite models versus in situ measurements (The X-coordinate is the satellite-derived Chl-a concentration value and the Y-coordinate is the in situ measured Chl-a concentration value, both in mg/m3)

    图  5  2021年11月14日9种模型反演Chl-a浓度的比较

    Fig.  5  Comparison of Chl-a estimations from 9 models on November 14, 2021

    图  6  GP模型反演气候态月平均Chl-a 浓度空间分布图

    Fig.  6  Spatial distribution of climatological monthly Chl-a concentrations derived by GP Model

    图  7  实测Chl-a浓度的逐月空间分布图

    Fig.  7  Spatial distribution of in situ measured monthly Chl-a concentrations

    图  8  2002−2024年研究区月均Chl-a浓度折线图

    Fig.  8  Monthly variability of Chl-a in the study area (2002−2024)

    图  9  2003−2023年研究区年均Chl-a浓度折线图

    Fig.  9  Annual mean Chl-a concentration in the study area (2003−2023)

    表  1  MODIS不同波段及波段组合

    Tab.  1  MODIS different bands and band combinations

    波段组合
    方式
    具体波段内容
    单个波段Rrs(412)、Rrs(443)、Rrs(469)、Rrs(488)、Rrs(531)
    Rrs(547)、Rrs(555)、Rrs(645)、Rrs(667)、Rrs(678)
    波段比Rrs(443)/Rrs(488)、Rrs(488)/Rrs(555)、Rrs(443)/Rrs(555)
    Rrs(555)/Rrs(667)、Rrs(443)/Rrs(667)、Rrs(488)/Rrs(667)
    波段差值(Rrs(488)-Rrs(443))/(488-443)、(Rrs(555)-Rrs(488))/(555-488)
    Rrs(555)-(Rrs(667)-Rrs(443))*(555-443)/(667-443)
    Rrs(555)-(Rrs(667)-Rrs(488))*(555-488)/(667-488)
    下载: 导出CSV

    表  2  机器学习模型的主要参数设置

    Tab.  2  Parameterization of machine learning models

    机器学习模型参数设置
    MLR默认参数
    SVM核函数:高斯;核尺度:0.16;盒约束:1.7;容错边界:0.14
    RF方法:LSBoost;学习周期数:127;学习率:0.02
    学习器: templateTree(最小叶子大小:3,每次抽样变量:11)
    ANN层尺寸:62;激活函数:relu
    正则化参数:4.87E-4;迭代限制:1000
    GP基函数:常数;核函数:指数
    核参数:[0.033 0.27];变异性:0.30;
    XGB学习速率:0.99;特征采样比例:0.9;树的最大深度:5;最小子节点权重:5;样本采样比例:0.9;最小分裂损失:1E-3
    GAM链接函数:identity link光滑函数:三次样条;初始结数:3
    下载: 导出CSV

    表  3  模型训练结果

    Tab.  3  Model training results

    机器学习模型 RMSE Bias R2 Slope Intercept
    MLR 0.248 −0.003 0.485 1.000 0.000
    SVM 0.136 −0.002 0.860 1.148 −0.043
    RF 0.178 −0.020 0.802 1.392 −0.081
    ANN 0.181 0.006 0.730 1.080 −0.023
    GP 0.070 0.000 0.968 1.104 −0.030
    XGB 0.068 −0.001 0.973 1.123 −0.037
    GAM 0.208 −0.006 0.640 1.037 −0.010
    下载: 导出CSV

    表  4  模型验证结果 (10倍交叉验证)

    Tab.  4  Model testing results (10-fold cross validation)

    机器学习模型 RMSE Bias R2 Slope Intercept
    OC3 0.460 0.280 0.036 0.435 0.030
    LMC 0.366 0.064 0.102 0.438 0.123
    MLR 0.260 −0.002 0.435 0.924 0.022
    SVM 0.234 0.007 0.541 1.036 −0.015
    RF 0.248 −0.018 0.521 1.313 −0.058
    ANN 0.228 0.005 0.566 0.945 0.015
    GP 0.213 0.004 0.622 1.049 −0.015
    XGB 0.244 0.022 0.532 1.291 −0.103
    GAM 0.239 −0.005 0.527 0.913 0.024
    下载: 导出CSV
  • [1] Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374): 200−206. doi: 10.1126/science.281.5374.200
    [2] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
    [3] Hu Chuanmin, Feng Lian, Guan Qi. A machine learning approach to estimate surface chlorophyll a concentrations in global oceans from satellite measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4590−4607. doi: 10.1109/TGRS.2020.3016473
    [4] Dierssen H M. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17073−17078.
    [5] 潘应阳, 国巧真, 孙金华. 水体叶绿素a浓度遥感反演方法研究进展[J]. 测绘科学, 2017, 42(1): 43−48.

    Pan Yingyang, Guo Qiaozhen, Sun Jinhua. Advances in remote sensing inversion method of chlorophyll a concentration[J]. Science of Surveying and Mapping, 2017, 42(1): 43−48.
    [6] Nazeer M, Nichol J E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong[J]. Journal of Hydrology, 2016, 532: 80−89. doi: 10.1016/j.jhydrol.2015.11.037
    [7] D'Alimonte D, Zibordi G. Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2861−2868. doi: 10.1109/TGRS.2003.817682
    [8] Guan Qi, Feng Lian, Hou Xuejiao, et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations[J]. Remote Sensing of Environment, 2020, 246: 111890. doi: 10.1016/j.rse.2020.111890
    [9] 罗婕纯一, 秦龙君, 毛鹏, 等. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473−488.

    Luo Jiechunyi, Qin Longjun, Mao Peng, et al. Research progress in the retrieval algorithms for Chlorophyll-a, a key element of water quality monitoring by remote sensing[J]. Remote Sensing Technology and Application, 2021, 36(3): 473−488.
    [10] 张明慧, 苏华, 季博文. MODIS时序影像的福建近岸叶绿素a浓度反演[J]. 环境科学学报, 2018, 38(12): 4831−4839.

    Zhang Minghui, Su Hua, Ji Bowen. Retrieving nearshore chlorophyll-a concentration using MODIS time-series images in the Fujian Province (China)[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4831−4839.
    [11] 滕越, 邹斌, 叶小敏. HY-1C卫星海岸带成像仪叶绿素a浓度反演研究[J]. 海洋学报, 2022, 44(5): 25−34.

    Teng Yue, Zou Bin, Ye Xiaomin. Study on the chlorophyll a concentration retrieved from HY-1C satellite coastal zone imager data[J]. Haiyang Xuebao, 2022, 44(5): 25−34.
    [12] Chen Jun, Quan Wenting, Wen Zhenhe, et al. An improved three-band semi-analytical algorithm for estimating chlorophyll-a concentration in highly turbid coastal waters: a case study of the Yellow River estuary, China[J]. Environmental Earth Sciences, 2013, 69(8): 2709−2719. doi: 10.1007/s12665-012-2093-1
    [13] Chen Jun, Quan Wenting. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery[J]. Environmental Monitoring and Assessment, 2013, 185(3): 2243−2255. doi: 10.1007/s10661-012-2705-y
    [14] Hao Qiang, Chai Fei, Xiu Peng, et al. Spatial and temporal variation in chlorophyll a concentration in the Eastern China Seas based on a locally modified satellite dataset[J]. Estuarine, Coastal and Shelf Science, 2019, 220: 220−231. doi: 10.1016/j.ecss.2019.01.004
    [15] 王梦雪, 丁晓坤, 侯兴, 等. 渤海叶绿素a的时空分布及其影响因素[J]. 中国海洋大学学报, 2023, 53(9): 123−131.

    Wang Mengxue, Ding Xiaokun, Hou Xing, et al. Temporal and spatial variations of chlorophyll a and their influencing factors in the Bohai Sea[J]. Periodical of Ocean University of China, 2023, 53(9): 123−131.
    [16] Wang Jiru, Tang Jiakui, Wang Wuhua, et al. Quantitative retrieval of chlorophyll-a concentrations in the Bohai–Yellow sea using GOCI surface reflectance products[J]. Remote Sensing, 2023, 15(22): 5285. doi: 10.3390/rs15225285
    [17] 王晓霞, 汪健平, 王佳莹, 等. 基于CNN-SVR网络的黄渤海近岸海域叶绿素a浓度预测[J]. 海洋预报, 2024, 41(4): 77−87.

    Wang Xiaoxia, WANG Jianping, WANG Jiaying, et al. Prediction of chlorophyll a concentration in nearshore waters of the Yellow and Bohai Seas based on CNN-SVR networks[J]. Marine Forecasts, 2024, 41(4): 77−87.
    [18] Yao Lulu, Wang Xiaopeng, Zhang Jiahua, et al. Prediction of sea surface chlorophyll-a concentrations based on deep learning and time-series remote sensing data[J]. Remote Sensing, 2023, 15(18): 4486. doi: 10.3390/rs15184486
    [19] 李鹏. 黄河口及其邻近海域悬浮泥沙多尺度时空动态与驱动机制[D]. 上海: 华东师范大学, 2023.

    Li Peng. Multi-scale spatiotemporal dynamics and driving mechanisms of suspended sediment in the Yellow River Estuary and its adjacent seas[D]. Shanghai: East China Normal University, 2023.
    [20] 骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10): 1133−1142.

    Luo Yongming. Sustainability associated coastal eco-environmental problems and coastal science development in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1133−1142.
    [21] Lorenzen C J. Determination of chlorophyll and pheo‐pigments: spectrophotometric equations[J]. Limnology and Oceanography, 1967, 12(2): 343−346. doi: 10.4319/lo.1967.12.2.0343
    [22] Cai Lina, Bu Juan, Tang Danling, et al. Geosynchronous satellite GF-4 observations of Chlorophyll-a distribution details in the Bohai Sea, China[J]. Sensors, 2020, 20(19): 5471. doi: 10.3390/s20195471
    [23] O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 1998, 103(C11): 24937−24953. doi: 10.1029/98JC02160
    [24] 王惠文, 孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报, 2007, 33(4): 500−504.

    Wang Huiwen, Meng Jie. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 500−504.
    [25] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273−297.
    [26] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
    [27] 李明轩, 黎雷. 机器学习在水环境典型水质参数遥感反演中的应用[J]. 净水技术, 2024, 43(8): 45−53.

    Li Mingxuan, Li Lei. Application of machine learning in remote sensing retrieval of typical water quality parameters in aquatic environments[J]. Water Purification Technology, 2024, 43(8): 45−53.
    [28] 张亭禄, 贺明霞. 基于人工神经网络的一类水域叶绿素-a浓度反演方法[J]. 遥感学报, 2002, 6(1): 40−44.

    Zhang Tinglu, He Mingxia. A method to retrieve the oceanic chlorophyll-a concentrations in case I water based on artificial neural network[J]. Journal of Remote Sensing, 2002, 6(1): 40−44.
    [29] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121−1129,1137.

    He Zhikun, Liu Guangbin, Zhao Xijing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121−1129,1137.
    [30] Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69−106. doi: 10.1142/S0129065704001899
    [31] Chen Tianqi, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
    [32] 傅春阳. 基于XGBoost模型的湖泊水体叶绿素a反演[D]. 阜新: 辽宁工程技术大学, 2023.

    Fu Chunyang. Retrieval of Chlorophyll-a in Lake water based on XGBoost model[D]. Fuxin: Liaoning Technical University, 2023.
    [33] 袁伟皓, 王华, 夏玉宝, 等. 基于GAM模型的鄱阳湖叶绿素a与水质因子相关性分析[J]. 生态环境学报, 2021, 30(8): 1716−1723.

    Yuan Weihao, Wang Hua, Xia Yubao, et al. Relationship of Chlorophyll A and water quality factors in Poyang Lake based on GAM model[J]. Ecology and Environmental Sciences, 2021, 30(8): 1716−1723.
    [34] Kim Y H, Im J, Ha H K, et al. Machine learning approaches to coastal water quality monitoring using GOCI satellite data[J]. GIScience & Remote Sensing, 2014, 51(2): 158−174.
    [35] 张乃星, 任荣珠, 吴凤丛, 等. 渤海海峡冬季营养盐的分布特征及影响因素[J]. 海洋通报, 2011, 30(6): 607−614.

    Zhang Naixing, Ren Rongzhu, Wu Fengcong, et al. Characteristics of vertical distribution and influence factors of the nutrients at Bohai Strait in winter[J]. Marine Science Bulletin, 2011, 30(6): 607−614.
    [36] Wang Yibo, Sun Yanyu, Wang Caixia, et al. Net-phytoplankton community structure and its environmental correlations in central Bohai Sea and the Bohai Strait[J]. Aquatic Ecosystem Health & Management, 2019, 22(4): 481−493.
    [37] 王英, 张晶晶, 吕其明, 等. 调水调沙对黄河口近海浮游植物群落结构时空分布影响[J]. 海洋环境科学, 2021, 40(3): 369−378.

    Wang Ying, Zhang Jingjing, Lv Qiming, et al. Effects of water and sediment regulation scheme on phytoplankton community and abundance in the Yellow River Estuary[J]. Marine Environmental Science, 2021, 40(3): 369−378.
    [38] 孟庆辉, 王林, 陈艳拢, 等. 2002—2021年渤海叶绿素a浓度变化及环境响应分析[J]. 中国环境监测, 2022, 38(6): 228−236.

    Meng Qinghui, Wang Lin, Chen Yanlong, et al. Change of Chlorophyll a concentration and its environmental response in the Bohai Sea from 2002 to 2021[J]. Environmental Monitoring in China, 2022, 38(6): 228−236.
    [39] 赵娜, 王霄鹏, 李咏沙, 等. 黄渤海海域叶绿素a浓度时空特征分布及影响因子分析[J]. 科学技术与工程, 2020, 20(17): 7101−7107.

    Zhao Na, Wang Xiaopeng, Li Yongsha, et al. Temporal-spatial distribution of chlorophyll-a and impacts of environmental factors in the Bohai Sea and Yellow Sea[J]. Science Technology and Engineering, 2020, 20(17): 7101−7107.
    [40] Shahriari B, Swersky K, Wang Ziyu, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148−175. doi: 10.1109/JPROC.2015.2494218
    [41] Wang Yueqi, Liu Dongyan, Tang Danling. Application of a generalized additive model (GAM) for estimating chlorophyll-a concentration from MODIS data in the Bohai and Yellow Seas, China[J]. International Journal of Remote Sensing, 2017, 38(3): 639−661. doi: 10.1080/01431161.2016.1268733
    [42] Liang Wen, Wang Yun, Liu Sumei, et al. Nutrient dynamics and coupling with biological processes and physical conditions in the Bohai Sea[J]. Frontiers in Marine Science, 2022, 9: 1025502. doi: 10.3389/fmars.2022.1025502
    [43] Liang Wen, Wang Yan, Mu Jinglong, et al. Nutrient changes in the Bohai Sea over the past two decades[J]. Science of the Total Environment, 2023, 903: 166696. doi: 10.1016/j.scitotenv.2023.166696
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-05-13

目录

    /

    返回文章
    返回