留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风“利奇马”对莱州湾水质变化的影响

杨子仪 杨雪娜 于晓霞 梁生康 宋德海

杨子仪,杨雪娜,于晓霞,等. 台风“利奇马”对莱州湾水质变化的影响[J]. 海洋学报,2025,47(x):1–14
引用本文: 杨子仪,杨雪娜,于晓霞,等. 台风“利奇马”对莱州湾水质变化的影响[J]. 海洋学报,2025,47(x):1–14
Yang Ziyi,Yang Xuena,Yu Xiaoxia, et al. The impact of Typhoon Lekima on water quality changes in Laizhou Bay[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: Yang Ziyi,Yang Xuena,Yu Xiaoxia, et al. The impact of Typhoon Lekima on water quality changes in Laizhou Bay[J]. Haiyang Xuebao,2025, 47(x):1–14

台风“利奇马”对莱州湾水质变化的影响

基金项目: 国家自然科学基金(42476158);山东省自然科学基金(ZR2019MD010);泰山学者工程专项经费资助(tsqn202211056)。
详细信息
    作者简介:

    杨子仪(2000—),女,山东省济南市人,主要从事近海环流与物质输运研究。E-mail:zyyang@stu.ouc.edu.cn

    通讯作者:

    宋德海(1983—),男,山东省青岛市人,教授,主要从事近海环流与物质输运研究。E-mail:songdh@ouc.edu.cn

The impact of Typhoon Lekima on water quality changes in Laizhou Bay

  • 摘要: 在全球变暖的背景下,台风的活动强度呈增加趋势,其伴随的强降雨和强风会在短时间内改变近海动力环境,引发强烈的生态响应。本文基于非结构化有限体积海洋模型(FVCOM)构建三维水动力−水质耦合模型,研究了台风“利奇马”(编号:1909)对莱州湾余流、盐度和水质变化及营养盐输运的影响,并通过敏感性实验量化了台风期间河流输入和风场对水质的贡献。结果表明,台风过境时,黄河口以南形成一支强西南沿岸流,海湾余流整体呈现西入东出的格局。强降雨过程导致环湾河流径流量和溶解态无机氮(DIN)入海通量急剧增加,黄河口和湾西南岸河口附近表层盐度骤降,DIN浓度升高。表层盐度于台风过境后2 d降至最低值25.91 PSU,较台风前下降1.57 PSU;表层DIN浓度于台风过境后8 d升至最高值0.61 mg/L,是台风前的1.51倍。湾口断面通量的计算结果显示,台风期间莱州湾与渤海的DIN交换经历了强入流和强出流两个阶段,共有1.88 kt DIN从莱州湾向渤海输运。其中,河流输入和风场对水质的贡献分别为70.15%和−18.47%,即河流输入是引发海湾水质剧烈变化的关键因素,而台风风场使余流向陆偏转,不利于DIN向渤海输运。本研究强调了台风在调控海湾水质变化中起到的关键作用,为沿海区域的可持续发展和生态环境保护提供科学支持。
  • 图  1  台风“利奇马”路径及模型计算区域网格和水深(a)、渤海M2分潮同潮图(b)、莱州湾网格和水深(c)

    有色圆点表示每3小时台风中心位置和强度(tcdata.typhoon.org.cn)[20-21];黑色实线框为莱州湾区域;黑色等值线为迟角(https://www.tpxo.net/global/tpxo9-atlas[22]

    Fig.  1  Typhoon Lekima track and grid and bathymetry in simulated region (a), cotidal chart of M2 tide in the Bohai Sea (b), and grid and bathymetry in Laizhou Bay (c)

    Colored dots indicate the location and intensity of the typhoon's three-hourly center (tcdata.typhoon.org.cn) [20-21]; black line boxes indicate the area in Laizhou Bay; black contour lines indicate the phase (https://www.tpxo.net/global/tpxo9-atlas)[22]

    图  2  Case0和Case1中莱州湾沿岸主要河流及排污口的入海水量和DIN通量(a)、Case0和Case2中莱州湾每6小时区域平均风矢量(b)、S1、S2、S3、S4、S5站观测与模拟水位(c−g)、C1、C3、C4、C5、C6站观测与模拟流速(h−q)的时间序列,其中C1站小潮期间实测资料缺失

    Fig.  2  Time series of river flow and DIN fluxes of major rivers and outlets in Laizhou Bay under Case0 and Case1 (a), six-hourly wind vectors averaged over region in Laizhou Bay under Case0 and Case2 (b), observed and simulated water levels at S1, S2, S3, S4, and S5 (c−g) and observed and simulated currents at C1, C3, C4, C5, and C6 (h−q). Note that data is missing during the neap tide at C1

    图  3  2019年夏季莱州湾实测和模拟温度(a−d)、盐度(e−h)、DIN(i−l)、DIP(m−p)的空间分布

    黑色圆点表示观测站位

    Fig.  3  Spatial distribution of observed and simulated temperature (a−d), salinity (e−h), DIN (i−l), and DIP (m−p) in Laizhou Bay in summer 2019

    Black dots indicate the observed stations

    图  4  台风过境前后Case0中莱州湾表层余流空间分布

    红色实线和红色五角星分别为“利奇马”路径和中心

    Fig.  4  Spatial distribution of surface residual currents in Laizhou Bay under Case0 before and after Lekima

    Red lines and pentagrams indicate the track and center of Lekima, respectively

    图  5  台风过境前后Case0中通过T1断面的余流垂向分布

    正值(负值)表示流出(流入)海湾;距离为沿断面从西向东的积分

    Fig.  5  Vertical distribution of residual currents through T1 section under Case0 before and after Lekima

    Positive (negative) values denote outflow from (inflow to) Laizhou Bay; distances indicate the integral from west to east along T1 section

    图  6  台风过境前后Case0中莱州湾表层盐度分布

    Fig.  6  Spatial distribution of surface salinity in Laizhou Bay under Case0 before and after Lekima

    图  7  Case0和Case3中无台风实验下莱州湾逐日表层平均盐度(a)及DIN浓度(b)的时间序列

    Fig.  7  Time series of daily surface averaged salinity (a) and DIN concentrations (b) in Laizhou Bay under Case0 and Case3

    图  8  台风过境前后Case0中莱州湾表层DIN浓度空间分布

    Fig.  8  Spatial distribution of surface DIN concentrations in Laizhou Bay under Case0 before and after Lekima

    图  9  台风过境前后各实验中莱州湾表层DIN浓度差空间分布

    Fig.  9  Spatial distribution of surface DIN concentration differences in Laizhou Bay under the experiments before and after Lekima

    图  10  台风过境前后控各实验中通过T1断面的逐时DIN净通量的时间序列

    红色圆点表示通过断面的时间

    Fig.  10  Time series of hourly DIN net fluxes through T1 section under the experiments before and after Lekima

    Red dots indicate the time of passage through T1 section

    表  1  数值实验设置

    Tab.  1  Numerical experiments setup

    实验名称 台风期间河流输入 台风风场
    Case0(控制实验)
    Case1(无河流输入实验) ×
    Case2(无台风风场实验) ×
    Case3(无台风实验) × ×
    下载: 导出CSV

    表  2  观测与模拟变量结果之间的RMSE、CC、WSS比较

    Tab.  2  Comparison of RMSE, CC, and WSS for the results of observed and simulated variables

    变量RMSECCWSS
    水位0.27 m0.880.94
    东向流速u(大潮)0.12 m·s−10.940.97
    北向流速v(大潮)0.09 m·s−10.910.95
    东向流速u(小潮)0.10 m·s−10.920.95
    北向流速v(小潮)0.12 m·s−10.790.87
    温度0.69℃0.870.91
    盐度1.58 PSU0.960.96
    DIN0.18 mg·L−10.930.96
    DIP0.0041 mg·L−10.680.78
    下载: 导出CSV

    表  3  各实验中通过T1断面的DIN通量及通量差

    Tab.  3  DIN fluxes and DIN flux differences through T1 section under the experiments

    实验名称 DIN通量(kt) DIN通量差(kt)
    Case0 1.88
    Case1 1.40 0.48
    Case2 2.01 −0.13
    Case3 1.20 0.68
    下载: 导出CSV
  • [1] Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [2] 王杰, 王洁, 代金圆, 等. 1977-2018年中国台风统计特征分析[J]. 海洋湖沼通报, 2021, 43(6): 28−33.

    Wang Jie, Wang Jie, Dai Jinyuan, et al. Statistical analysis of the characteristics of typhoons in China from 1977 to 2018[J]. Transactions of Oceanology and Limnology, 2021, 43(6): 28−33.
    [3] Ezer T. On the interaction between a hurricane, the gulf stream and coastal sea level[J]. Ocean Dynamics, 2018, 68(10): 1259−1272. doi: 10.1007/s10236-018-1193-1
    [4] Paerl H W, Crosswell J R, Van Dam B, et al. Two decades of tropical cyclone impacts on north Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world[J]. Biogeochemistry, 2018, 141(3): 307−332. doi: 10.1007/s10533-018-0438-x
    [5] Zhao Hui, Tang Danling, Wang Dongxiao. Phytoplankton blooms near the Pearl River Estuary induced by Typhoon Nuri[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12027.
    [6] 王腾, 刘广鹏, 赵世烨, 等. 台风事件对闽江口上游营养盐和有机碳含量及通量的影响[J]. 应用海洋学学报, 2016, 35(1): 38−46. doi: 10.3969/J.ISSN.2095-4972.2016.01.005

    Wang Teng, Liu Guangpeng, Zhao Shiye, et al. Influence of two typhoon events on the content and flux of nutrient and organic carbon in the upper Minjiang Estuary[J]. Journal of Applied Oceanography, 2016, 35(1): 38−46. doi: 10.3969/J.ISSN.2095-4972.2016.01.005
    [7] Chen Chunqing, Lao Qibin, Zhou Xin, et al. Tracks of typhoon movement (left and right sides) control marine dynamics and eco-environment in the coastal bays after typhoons: A case study in Zhanjiang Bay[J]. Science of the Total Environment, 2024, 912: 168944. doi: 10.1016/j.scitotenv.2023.168944
    [8] Cao Tong, Zhou Feng, Tian Di, et al. Degradation of water quality caused by typhoon passage: a case study of the Zhejiang coastal waters in 2019[J]. Frontiers in Marine Science, 2024, 11: 1458827. doi: 10.3389/fmars.2024.1458827
    [9] Xin Ming, Wang Baodong, Xie Linping, et al. Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China[J]. Marine Pollution Bulletin, 2019, 146: 562−573. doi: 10.1016/j.marpolbul.2019.07.011
    [10] 祝雅轩, 裴绍峰, 张海波, 等. 莱州湾营养盐和富营养化特征与研究进展[J]. 海洋地质前沿, 2019, 35(4): 1−9.

    Zhu Yaxuan, Pei Shaofeng, Zhang Haibo, et al. Characteristics and research progress of nutrients and eutrophication in Laizhou Bay, China[J]. Marine Geology Frontiers, 2019, 35(4): 1−9.
    [11] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因[J]. 应用气象学报, 2020, 31(5): 513−526. doi: 10.11898/1001-7313.20200501

    He Lifu, Chen Shuang, Guo Yunqian. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019[J]. Journal of Applied Meteorological Science, 2020, 31(5): 513−526. doi: 10.11898/1001-7313.20200501
    [12] Zhao Binfeng, Qu Xiaoping, Zhu Xiangyu, et al. Ocean surface responses to super typhoon in coastal zone based on biogeochemical buoys data: a case study of “Lekima”[J]. Continental Shelf Research, 2021, 227: 104505. doi: 10.1016/j.csr.2021.104505
    [13] 卢龙飞, 常丽荣, 肖露阳, 等. 台风对桑沟湾、爱莲湾表层海水的影响探究[J]. 环境保护前沿, 2020, 10(1): 39−48.

    Lu Longfei, Chang Lirong, Xiao Luyang, et al. Impact of three typhoon events upon surface water of Sanggou Bay and Ailian Bay[J]. Advances in Environmental Protection, 2020, 10(1): 39−48.
    [14] 中华人民共和国水利部. 全国水情年报[R]. 北京: 中华人民共和国水利部, 2019. (查阅网上资料, 未找到本条文献信息, 请确认)

    Ministry of Water Resources of the People's Republic of China. National Hydrology Annual Bulletin[R]. Beijing: Ministry of Water Resources of the People's Republic of China, 2019.
    [15] Li Hongguan, Li Shanshan, Zhang Mingzheng, et al. Typhoon-induced stormwater drives nutrient dynamics and triggers phytoplankton blooms in Laizhou Bay, China[J]. Marine Environmental Research, 2024, 198: 106473. doi: 10.1016/j.marenvres.2024.106473
    [16] Jiang Tao, Wu Guannan, Niu Pengli, et al. Short-term changes in algal blooms and phytoplankton community after the passage of Super Typhoon Lekima in a temperate and inner sea (Bohai Sea) in China[J]. Ecotoxicology and Environmental Safety, 2022, 232: 113223. doi: 10.1016/j.ecoenv.2022.113223
    [17] 中国海湾志编纂委员会. 中国海湾志(第三分册) [M]. 北京: 海洋出版社, 1991.

    China Gulf Gazetteer Editorial Committee. China Gulf Gazetteer (Volume 3)[M]. Beijing: China Ocean Press, 1991. (查阅网上资料, 未找到对应的英文翻译信息, 请确认)
    [18] 罗丹, 刘浩. 渤海潮汐潮流的数值研究[J]. 上海海洋大学学报, 2015, 24(3): 457−464.

    Luo Dan, Liu Hao. Numerical study on the tides and tidal currents in the Bohai Sea[J]. Journal of Shanghai Ocean University, 2015, 24(3): 457−464.
    [19] 王鑫, 胡泓, 隋修国, 等. 2017—2019年莱州湾陆源污染物入海通量研究[J/OL]. 海洋湖沼通报(中英文), 2025: 1−15. (2025-01-02). https://link.cnki.net/urlid/37.1141.p.20241231.1606.008. (查阅网上资料,请联系作者补充引用日期信息)

    Wang Xin, Hu Hong, Sui Xiuguo, et al. Study on the flux of land-based sources of pollutants into the sea in Laizhou Bay from 2017 to 2019[J/OL]. Transactions of Oceanology and Limnology, 2025: 1−15. (2025-01-02). https://link.cnki.net/urlid/37.1141.p.20241231.1606.008.
    [20] Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [21] Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [22] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [23] Chen Changsheng, Liu Hedong, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159−186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
    [24] Chen Changsheng, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography, 2006, 19(1): 78−89. doi: 10.5670/oceanog.2006.92
    [25] 李克强, 王修林, 石晓勇, 等. 胶州湾围隔浮游生态系统氮、磷营养盐迁移-转化模型研究[J]. 海洋学报(中文版), 2007, 29(3): 76−83.

    Li Keqiang, Wang Xiulin, Shi Xiaoyong, et al. Modeling nitrogen and phosphorus transport and transformation in pelagic ecosystem in mesocosm in Jiaozhou Bay[J]. Haiyang Xuebao, 2007, 29(3): 76−83.
    [26] 李克强, 王修林, 韩秀荣, 等. 莱州湾围隔浮游生态系统氮、磷营养盐迁移-转化模型研究[J]. 中国海洋大学学报(自然科学版), 2007, 37(3): 987−994.

    Li Keqiang, Wang Xiulin, Han Xiurong, et al. Modeling nitrogen and phosphorus transport and transformation in pelagic ecosystems in mesocosm in Laizhou Bay[J]. Periodical of Ocean University of China, 2007, 37(3): 987−994.
    [27] 吕赫, 张少峰, 宋德海, 等. 基于大规模围填海和陆源排污压力下的广西钦州湾环境容量变化及损失评估[J]. 海洋学报, 2023, 45(2): 139−150.

    Lyu He, Zhang Shaofeng, Song Dehai, et al. Environmental capacity change and loss assessment of Qinzhou Bay in Guangxi induced by large-scale reclamation and land-based sewage discharge[J]. Haiyang Xuebao, 2023, 45(2): 139−150.
    [28] Han Haiwen, Xiao Rushui, Gao Guandong, et al. Influence of a heavy rainfall event on nutrients and phytoplankton dynamics in a well-mixed semi-enclosed bay[J]. Journal of Hydrology, 2023, 617: 128932. doi: 10.1016/j.jhydrol.2022.128932
    [29] 郭陈敏. 2021年秋季强降雨-河流洪水及其次生过程对莱州湾水质的影响分析[D]. 青岛: 中国海洋大学, 2024. (查阅网上资料, 未找到本条文献信息, 请确认)

    Guo Chenmin. The impact of 2021 autumn heavy-rainfall-induced river flood and its secondary process on the water quality of Laizhou Bay[D]. Qingdao: Ocean University of China, 2024.
    [30] Ding Yang, Bao Xianwen, Yao Zhigang, et al. Effect of coastal-trapped waves on the synoptic variations of the Yellow Sea Warm Current during winter[J]. Continental Shelf Research, 2018, 167: 14−31. doi: 10.1016/j.csr.2018.08.003
    [31] Ding Yang, Bao Xianwen, Zhou Lingling, et al. Modeling the westward transversal current in the southern Yellow Sea entrance: A case study in winter 2007[J]. Ocean Dynamics, 2020, 70(6): 803−825. doi: 10.1007/s10236-020-01361-9
    [32] Jiang Meng, Peng Hui, Liang Shengkang, et al. Impact of extreme rainfall on non-point source nitrogen loss in coastal basins of Laizhou Bay, China[J]. Science of the Total Environment, 2023, 881: 163427. doi: 10.1016/j.scitotenv.2023.163427
    [33] Chow V T, Maidment D R, Mays L W. Applied Hydrology[M]. New York: McGraw-Hill, 1988.
    [34] Yan Junjie, Zhai Fangguo, Gu Yanzhen, et al. Drastic fluctuation in water exchange between the Yellow Sea and Bohai Sea caused by Typhoon Lekima in August 2019: A numerical study[J]. Journal of Geophysical Research: Oceans, 2023, 128(6): e2022JC019260. doi: 10.1029/2022JC019260
    [35] 梁生康, 李姗姗, 马浩阳, 等. 基于陆海同步调查的莱州湾营养盐时空分布及限制因子分析[J]. 中国海洋大学学报(自然科学版), 2022, 52(8): 97−110.

    Liang Shengkang, Li Shanshan, Ma Haoyang, et al. Spatial-temporal distributions and limiting factors of nutrients in Laizhou Bay based on land-sea synchronous survey[J]. Periodical of Ocean University of China, 2022, 52(8): 97−110.
    [36] Chi Wanqing, Zhang Xiaodong, Zhang Wenming, et al. Impact of tidally induced residual circulations on chemical oxygen demand (COD) distribution in Laizhou Bay, China[J]. Marine Pollution Bulletin, 2020, 151: 110811. doi: 10.1016/j.marpolbul.2019.110811
    [37] 国家环境保护局. GB 3097-1997, 海水水质标准[S]. 北京: 环境科学出版社, 2004.

    National Environmental Protection Agency. GB 3097-1997, Marine water quality standard[S]. Beijing: Environmental Science Press, 2004. (查阅网上资料, 未找到作者对应的英文翻译信息, 请确认)
    [38] Lee T Y, Huang J C, Kao S J, et al. Temporal variation of nitrate and phosphate transport in headwater catchments: the hydrological controls and land use alteration[J]. Biogeosciences, 2013, 10(4): 2617−2632. doi: 10.5194/bg-10-2617-2013
    [39] Zhang Peng, Long Huizi, Li Zhihao, et al. Effects of typhoon events on coastal hydrology, nutrients, and algal bloom dynamics: Insights from continuous observation and machine learning in semi-enclosed Zhanjiang Bay, China[J]. Science of the Total Environment, 2024, 924: 171676. doi: 10.1016/j.scitotenv.2024.171676
    [40] Shiah F K, Chung S W, Kao S J, et al. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan strait[J]. Continental Shelf Research, 2000, 20(15): 2029−2044. doi: 10.1016/S0278-4343(00)00055-8
    [41] 杨逸萍, 郭卫东, 方志山, 等. 台风暴雨对厦门港湾海水溶解无机氮、磷含量的影响[J]. 海洋科学, 2003, 27(7): 52−58. doi: 10.3969/j.issn.1000-3096.2003.07.013

    Yang Yiping, Guo Wendong, Fang Zhishan, et al. Influence of typhoon and rainstorm process on dissolved inorganic nitrogen and dissolved inorganic phosphorus of seawater in Xiamen Bay[J]. Marine Sciences, 2003, 27(7): 52−58. doi: 10.3969/j.issn.1000-3096.2003.07.013
    [42] Lou Qi, Li Zhengyan, Zhang Yanwei, et al. Impact of Typhoon Lekima (2019) on material transport in Laizhou Bay using Lagrangian coherent structures[J]. Journal of Oceanology and Limnology, 2022, 40(3): 922−933. doi: 10.1007/s00343-021-0384-7
    [43] Zhang Hongxing, Shen Yongming, Zhao Andong, et al. Numerical modelling of storm surge, nutrient pollution and saltwater intrusion in a large estuary with typhoon effects[J]. Environmental Modelling & Software, 2022, 155: 105449.
    [44] Cai Yihua, Guo Laodong, Wang Xuri, et al. Effects of tropical cyclones on river chemistry: A case study of the lower Pearl River during hurricanes Gustav and Ike[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 180−188. doi: 10.1016/j.ecss.2013.05.019
    [45] Liu Yanhao, Wang Houjie, Cong Shuai, et al. Rapid oscillation of sediment transport between the Bohai Sea and the Yellow Sea induced by Typhoon Lekima (2019)[J]. Marine Geology, 2023, 465: 107160. doi: 10.1016/j.margeo.2023.107160
    [46] 毕玉明, 马方方, 江田田, 等. 基于浮标观测的2019年暴雨过后秦皇岛近岸海域水质参数变化分析[J]. 海洋湖沼通报, 2022, 44(1): 60−66.

    Bi Yuming, Ma Fangfang, Jiang Tiantian, et al. Changes of water quality parameters of buoys in Qinhuangdao sea area after a rainstorm in 2019[J]. Transactions of Oceanology and Limnology, 2022, 44(1): 60−66.
    [47] 朱金龙, 孙伟, 陈少伟, 等. 岸线变迁对莱州湾纳潮量和水交换的影响研究[J]. 海洋湖沼通报, 2024, 46(3): 12−18.

    Zhu Jinlong, Sun Wei, Chen Shaowei, et al. Studieson the influence of coastline change on tidal prism and water exchange of Laizhou Bay[J]. Transactions of Oceanology and Limnology, 2024, 46(3): 12−18.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-14
  • 修回日期:  2025-08-23
  • 网络出版日期:  2025-09-05

目录

    /

    返回文章
    返回