留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离线分离富集—电感耦合等离子体质谱法测定海水中15种痕量元素

常明珠 苏函 瞿建国

常明珠,苏函,瞿建国. 离线分离富集—电感耦合等离子体质谱法测定海水中15种痕量元素[J]. 海洋学报,2025,47(x):1–12
引用本文: 常明珠,苏函,瞿建国. 离线分离富集—电感耦合等离子体质谱法测定海水中15种痕量元素[J]. 海洋学报,2025,47(x):1–12
Chang Mingzhu,Su Han,Qu Jianguo. Determination of 15 trace elements in seawater by using inductively coupled plasma mass spectrometry with off-line separation and concentration[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Chang Mingzhu,Su Han,Qu Jianguo. Determination of 15 trace elements in seawater by using inductively coupled plasma mass spectrometry with off-line separation and concentration[J]. Haiyang Xuebao,2025, 47(x):1–12

离线分离富集—电感耦合等离子体质谱法测定海水中15种痕量元素

基金项目: 国家自然科学基金委员会青年基金项目(42106168)。
详细信息
    作者简介:

    常明珠(1998—),女,河南省驻马店市人,硕士研究生,主要从事海水痕量元素方法测定研究。E-mail:51213904040@stu.ecnu.edu.cn

    通讯作者:

    瞿建国,副教授,主要从事电感耦合等离子质谱分析技术及其对环境和地质等样品中痕量元素浓度、同位素分析技术方法的开发和应用研究。E-mail: jgqu@des.ecnu.edu.cn

Determination of 15 trace elements in seawater by using inductively coupled plasma mass spectrometry with off-line separation and concentration

  • 摘要: 基于自制的分离富集装置,使用Toyopearl AF-chelate 650M螯合树脂对海水中15种痕量元素(Al、Sc、V、Fe、Co、Ni、Cu、Zn、Ga、Cd、Nd、Pb、Bi、Th和U)进行了分离富集样品前处理技术方法的研究,优化了上样pH、清洗液的类型和用量、洗脱液类型和用量,并联合高分辨率电感耦合等离子质谱仪(HR-ICP-MS)进行准确的测定。结果表明:8.92 mL的海水样品与醋酸−醋酸铵缓冲溶液以1∶1等比例混合(上样pH = 5.25)后加载到螯合树脂上,然后使用8.0 mL Milli-Q水清洗基体杂质,最后使用2.25 mL 0.8 mol/L HNO3洗脱。洗脱液加入Rh内标后使用HR-ICP-MS测定。方法全流程空白为0.27(Cd)~52.5(Al)pg,方法检出限为0.06(Cd)~1.67(Zn)ng/L,在0.010~50.0 μg/L浓度范围内线性关系良好(R2 > 0.999)。该方法通过分析标准海水GBW(E)080040和国际标准海水CASS-6进行了验证,GBW(E)080040中Cu、Zn、Cd、Pb的测定值均落在标准值范围内,相对误差绝对值 < 4.1%,相对标准偏差(RSD) < 4.1%,15种痕量元素的加标回收率在92.6%~107%之间。CASS-6的测定结果与认证值和报告值一致,RSD < 6.4%。本方法前处理过程简单快速、基质去除率高、检出限低、准确度高、精密度好,适用于天然淡水、饮用水、河口近岸以及大洋海水中15种痕量元素的同时准确测定。
  • 图  1  痕量元素分离富集装置示意图

    四通道选择阀(V1、V2)、六通道切换阀(V3、V4)、蠕动泵(P1)、真空泵(P2)、富集柱(100 × 2.1 mm ID)、清洁柱(50 × 4 mm ID)、定量环(8.92 mL)、流路管线(0.80 mm ID)、泵管(0.76 mm ID)

    Fig.  1  The diagram of trace elements separation and enrichment device

    Four-channel selection valve (V1, V2), six-channel switching valve (V3, V4), peristaltic pump (P1), vacuum pump (P2), enrichment column (100 × 2.1 mm ID), cleaning column (50 × 4 mm ID), quantitative ring (8.92 mL), flow line (0.80 mm ID), pump pipe (0.76 mm ID)

    图  2  盐度对HR–ICP–MS测定结果的影响

    Fig.  2  Effect of salinity on results of HR–ICP–MS

    图  3  上样pH对痕量元素分离富集效率的影响

    样品:1.0 μg/L标准样品,洗脱液:2.0 mL 1.0 mol/L HNO3

    Fig.  3  Effect of different sample loading pH on the separation and enrichment efficiency of trace elements

    Sample: 1.0 μg/L standard sample, eluate solution: 2.0 mL 1.0 mol/L HNO3

    图  4  不同洗脱液对痕量元素的洗脱效率的影响

    样品:1.0 μg/L的标准样品,上样pH = 5.25 ± 0.10,清洗液:4.0 mL缓冲溶液2

    Fig.  4  Effect of different eluates on the elution efficiency of trace elements

    Sample: 1.0 μg/L standard sample, loading sample pH = 5.25 ± 0.10, cleaning solution: 4.0 mL of buffer solution 2

    图  5  清洗液H2O2浓度对15种痕量元素回收率的影响

    样品:1.0 μg/L标准样品,上样pH = 5.25 ± 0.10,清洗液用量:3.0 mL,洗脱液:2.0 mL 0.8 mol/L HNO3

    Fig.  5  Effect of H2O2 concentration on recovery of 15 trace elements

    Sample: 1.0 μg/L standard sample, loading sample pH = 5.25 ± 0.10, cleaning solution is 3.0 mL, eluate solution: 2.0 mL 0.8 mol/L HNO3

    图  6  Milli-Q水用量对实际海水样品中Mo和基体元素清洗效果的影响

    Fig.  6  Effect of Milli-Q water dosage on the cleaning effect of Mo and matrix elements in actual seawater samples

    图  7  加标回收率试验结果

    Fig.  7  Spiking and recovery rate test results

    表  1  痕量元素分离富集实验流程

    Tab.  1  Experimental process of sample trace elements enrichment and separation

    实验步骤 阀1 阀2 阀3 阀4 泵1 泵2 时间/s
    柱条件化,预填充样品 3 1 B B 120
    上样 2 1 A B 536
    冲洗 1 1 A B 240
    洗脱 1 4 A A 135
    清洁 1 4 A A 120
      注:样品处理过程中蠕动泵流速为1.0 mL·min−1
      Note: The flow rate of peristaltic pump during sample processing is 1.0 mL·min−1.
    下载: 导出CSV

    表  2  Element 2仪器的工作参数

    Tab.  2  The operating conditions of the Element 2 instrument

    仪器参数 参数值
    射频功率/W 1300
    冷却气流速/(L·min−1) 16.00
    辅助气流速/(L·min−1) ~1.00
    样品气流速/(L·min−1) 1.25~1.27
    镍锥
    雾化器流速/(μL·min−1) ~100
    扫描类型 E–scan
    扫描步长 30
    扫描次数 3 × 5
    质量窗口 100%
    积分窗口 50%
    选择
    同位素
    LR:98Mo、111Cd、146Nd、208Pb、209Bi、232Th、238U、103Rh
    MR:27Al、45Sc、51V、56Fe、59Co、60Ni、63Cu、66Zn、69Ga、103Rh
    下载: 导出CSV

    表  3  不同清洗液对16种痕量元素回收率的影响(n = 3)

    Tab.  3  Effect of different cleaning solutions on the recovery of 16 trace elements (n = 3)

    超纯水 缓冲溶液2 0.05% H2O2
    Al 103.5 ± 0.4 103.6 ± 2.5 101.3 ± 0.4
    Sc 98.8 ± 1.9 98.0 ± 0.5 99.4 ± 0.5
    V 97.8 ± 0.5 100.1 ± 0.7 24.0 ± 0.3
    Fe 99.1 ± 2.6 97.8 ± 0.8 98.7 ± 0.8
    Co 96.3 ± 1.3 96.8 ± 1.5 99.8 ± 0.5
    Ni 96.7 ± 0.1 96.0 ± 2.2 92.9 ± 0.5
    Cu 100.2 ± 1.7 98.1 ± 1.9 99.6 ± 1.1
    Zn 100.0 ± 0.3 97.5 ± 2.7 96.2 ± 0.7
    Ga 97.9 ± 1.9 96.9 ± 1.0 98.0 ± 0.6
    Mo 19.1 ± 0.8 96.8 ± 0.5 17.0 ± 0.1
    Cd 98.2 ± 1.3 97.3 ± 2.3 94.8 ± 0.9
    Nd 96.9 ± 1.4 97.6 ± 1.3 95.0 ± 0.9
    Pb 100.5 ± 2.1 101.3 ± 0.9 98.0 ± 0.5
    Bi 101.4 ± 2.8 101.8 ± 1.0 103.3 ± 0.1
    Th 102.3 ± 3.3 94.4 ± 2.9 105.3 ± 0.7
    U 97.5 ± 2.6 97.8 ± 1.0 94.5 ± 0.4
      注:样品:1.0 μg/L的标准样品,上样pH = 5.25 ± 0.10,清洗液用量:6 mL,洗脱液:2 mL 0.8 mol/L HNO3
      Note: Sample: 1.0 μg/L standard sample, loading sample pH = 5.25 ± 0.10, cleaning solution: 6.0 mL, eluent: 2.0 mL 0.8 mol/L HNO3.
    下载: 导出CSV

    表  4  样品盐度对15种痕量元素分离富集效果的影响

    Tab.  4  Effect of sample salinity on the separation and enrichment effect of 15 trace elements

    04.59.017.935.8
    Al100.1 ± 1.7100.9 ± 2.4102.5 ± 5.793.0 ± 0.495.3 ± 1.6
    Sc99.6 ± 1.5102.1 ± 0.8105.0 ± 5.0102.3 ± 0.4103.7 ± 1.4
    V100.8 ± 1.1105.3 ± 0.498.9 ± 1.8106.5 ± 0.5105.3 ± 0.4
    Fe98.5 ± 1.199.4 ± 1.4104.5 ± 0.796.3 ± 0.996.1 ± 0.7
    Co101.4 ± 1.1102.6 ± 0.7105.2 ± 0.499.9 ± 0.2100.4 ± 0.6
    Ni101.7 ± 0.6102.3 ± 0.2102.8 ± 2.098.2 ± 0.397.6 ± 0.8
    Cu101.1 ± 1.0101.1 ± 0.5103.8 ± 0.897.0 ± 0.299.7 ± 0.9
    Zn101.7 ± 1.7103.8 ± 1.398.8 ± 4.0103.5 ± 0.4103.1 ± 0.5
    Ga96.0 ± 0.497.0 ± 0.6103.7 ± 1.196.2 ± 0.495.1 ± 0.7
    Cd100.0 ± 0.1105.8 ± 0.8100.3 ± 2.2105.8 ± 0.199.4 ± 0.5
    Nd100.2 ± 0.4102.7 ± 0.1101.8 ± 0.7104.4 ± 0.5103.7 ± 0.6
    Pb99.4 ± 1.4100.8 ± 1.399.5 ± 0.398.6 ± 2.097.1 ± 0.9
    Bi100.6 ± 0.795.7 ± 1.597.3 ± 1.994.2 ± 1.493.8 ± 1.3
    Th103.8 ± 0.5101.1 ± 2.196.6 ± 1.9103.6 ± 0.599.9 ± 0.8
    U100.7 ± 2.798.5 ± 1.9101.5 ± 4.8100.5 ± 2.1101.8 ± 1.4
    下载: 导出CSV

    表  5  15种痕量元素的定量限、线性关系、方法空白与检出限

    Tab.  5  Quantitative limit, linear relation, method blank and detection limit of 15 trace elements

    元素仪器检出限/(ng·L−1)仪器定量限/(ng·L−1)线性方程相关系数/R2方法空白/pg(方法检出限/(ng·L−1))
    文献[18]文献[19]文献[21]文献[13]文献[26]本研究
    Al2.869.53Y = 0.5689x0.9998-----52.5(1.06)
    Sc0.120.40Y = 0.6789x1.0000-----1.34(0.33)
    V0.060.19Y = 0.6674x1.00001.20(4.3)----1.69(0.23)
    Fe0.461.53Y = 0.7769x1.0000--156(1.18)67.2(0.78)-31.5(1.64)
    Co0.020.06Y = 0.8875x1.00001.20(0.5)-4.68(0.12)1.20(0.01)3.0(0.1)1.16(0.22)
    Ni2.528.40Y = 0.1961x1.000060.0(5.0)80.0(6.0)27.5(1.56)468(5.0)20(4.0)2.23(0.23)
    Cu0.100.32Y = 0.4277x1.00009.30(1.2)-11.6(0.46)84.0(3.3)22(3.0)4.55(0.42)
    Zn2.418.03Y = 0.0619x1.0000129(9.0)190(28)200(0.33)68.0(2.0)70(4.0)39.4(1.67)
    Ga0.842.81Y = 0.5540x1.0000-----0.54(0.12)
    Cd0.040.13Y = 0.0900x1.00003.30(0.06)32.5(1.4)5.04(0.06)3.60(0.10)0.40(0.06)0.27(0.06)
    Nd0.040.12Y = 0.2478x1.0000-----0.45(0.14)
    Pb0.070.24Y = 0.8117x0.99986.30(1.2)16.0(1.0)3.48(0.04)8.40(0.12)3.0(1.0)1.61(0.24)
    Bi0.0020.005Y = 1.2552x0.9999-----0.98(0.25)
    Th0.0050.020Y = 0.8802x1.0000-----1.69(0.53)
    U0.0020.005Y = 1.3462x0.9999-----1.61(0.54)
    下载: 导出CSV

    表  6  标准海水测定结果

    Tab.  6  The determination results of the standard seawater

    元素 GBW(E)080040 CASS-6
    认证值/(μg·L−1)
    (mean ± 1σ
    测定值/(μg·L−1)
    (mean ± 1σ, n = 6)
    相对误差/% 精密度/% 加标浓度/(μg·L−1) 加标回收率/%
    (mean ± 1σ, n = 6)
    认证值/(μg·L−1)
    (mean ± 1σ)
    测定值/(μg·L−1)
    (mean ± 1σ, n = 3)
    精密度/%
    Al / 4.50 ± 0.06 / 1.3 0.50 105 ± 4.9 / / /
    Sc / 0.008 ± 0.0002 / 2.5 0.05 98.8 ± 1.3 / / /
    V / 1.63 ± 0.01 / 0.6 0.50 102 ± 2.0 0.50 ± 0.12 0.473 ± 0.005 1.1
    Fe / 0.19 ± 0.01 / 5.3 0.05 104 ± 4.1 1.56 ± 0.12 1.53 ± 0.033 2.2
    Co / 0.001 ± 0.0001 / 10.0 0.05 99.1 ± 1.9 0.067 ± 0.0052 0.063 ± 0.0002 0.3
    Ni / 0.22 ± 0.01 / 4.5 0.05 97.4 ± 1.7 0.418 ± 0.04 0.402 ± 0.006 1.5
    Cu 5.12 ± 0.41 5.33 ± 0.07 4.1 1.3 0.50 107 ± 2.8 0.53 ± 0.032 0.508 ± 0.004 0.8
    Zn 71.75 ± 3.08 71.36 ± 2.95 –0.5 4.1 5.00 97.4 ± 5.8 1.27 ± 0.18 1.11 ± 0.01 0.1
    Ga / 0.004 ± 0.0002 / 5.0 0.05 102 ± 1.5 / / /
    Cd 1.02 ± 0.08 1.00 ± 0.01 –2.7 1.0 0.05 103 ± 4.9 0.0217 ± 0.0018 0.0208 ± 0.0010 4.8
    Nd / 0.007 ± 0.001 / 14.3 0.05 97.7 ± 5.4 0.004 0.0045 ± 0.0001 2.2
    Pb 10.25 ± 0.75 9.94 ± 0.26 –3.0 2.6 0.50 101 ± 2.5 0.0106 ± .0.004 0.0109 ± 0.0007 6.4
    Bi / 0.005 ± 0.0006 / 12.0 0.05 102 ± 1.4 / / /
    Th / 0.006 ± 0.001 / 16.7 0.05 94.2 ± 7.3 / / /
    U / 2.71 ± 0.07 / 2.6 0.50 92.6 ± 6.2 2.92 ± 0.42 2.84 ± 0.05 1.8
    下载: 导出CSV

    表  7  实际样品的测定结果

    Tab.  7  The determination results of trace elements in actual samples

    元素 瓶装饮用水1 瓶装饮用水2 菲律宾海域海水 太平洋赤道海水
    浓度/(ng·L−1) 精密度/% 浓度/(ng·L−1) 精密度/% 浓度/(ng·L−1) 精密度/% 加标浓度/(ng·L−1) 回收率/% 浓度/(ng·L−1) 精密度/% 加标浓度/(ng·L−1) 回收率
    /%
    Al 165.15 1.5 55.54 4.4 1947.15 1.9 1000 95.3 80.60 1.7 100 96.4
    Sc < 0.33 / < 0.33 / 5.42 7.6 100 96.0 < 0.33 / 100 96.2
    V 250.93 2.8 8.11 1.9 1506.02 0.6 1000 105 1636.13 0.4 1000 102
    Fe 48.29 7.7 6.51 2.7 26.36 4.0 100 102 127.88 1.0 100 98.7
    Co 8.83 2.8 < 0.22 / 1.10 3.6 10.0 94.3 0.38 3.1 10.0 99.7
    Ni 62.38 2.0 < 0.23 / 103.79 2.0 100 103 76.75 2.9 100 101
    Cu 167.17 1.8 1.16 8.6 23.45 3.3 100 97.3 34.15 1.0 100 96.9
    Zn 116.56 4.9 21.40 2.7 256.44 6.7 100 97.4 17.95 5.7 10.0 101
    Ga 2.10 4.2 < 0.12 / 2.43 4.1 10.0 101 0.53 6.3 10.0 99.5
    Cd 1.30 4.4 0.18 9.1 31.15 2.6 100 103 12.10 9.3 10.0 98.9
    Nd 0.20 5.0 < 0.14 / 1.27 0.8 10.0 105 0.35 2.9 10.0 95.8
    Pb < 0.24 / 0.31 7.6 9.54 1.3 10.0 106 1.58 0.6 10.0 104
    Bi < 0.25 / < 0.25 / 8.95 6.7 10.0 99.4 5.69 1.9 10.0 94.6
    Th < 0.53 / < 0.53 / 3.76 2.9 10.0 102 < 0.53 / 10.0 101
    U 59.31 0.9 30.16 2.4 2438.10 1.2 1000 102 2797.82 0.9 1000 99.3
      注:未检出的用“<方法检出限”表示。
      Note: Undetected is indicated by “ < method detection limit ”.
    下载: 导出CSV
  • [1] Schlesinger W H, Klein E M, Vengosh A. Global biogeochemical cycle of Vanadium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): E11092−E11100.
    [2] Morel F M M, Price N M. The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5621): 944−947. doi: 10.1126/science.1083545
    [3] Barrett P M, Resing J A, Buck N J, et al. The trace element composition of suspended particulate matter in the upper 1000 m of the eastern North Atlantic Ocean: A16N[J]. Marine Chemistry, 2012, 142-144: 41−53. doi: 10.1016/j.marchem.2012.07.006
    [4] Mcalister J A, Orians K J. Dissolved gallium in the Beaufort Sea of the Western Arctic Ocean: a GEOTRACES cruise in the International Polar Year[J]. Marine Chemistry, 2015, 177: 101−109. doi: 10.1016/j.marchem.2015.05.007
    [5] Liu Zhengbo, Zhang Jing, Jiang Shuo, et al. Observed dissolved gallium in the tropical and subtropical waters in the Western Pacific Ocean[J]. Chemical Geology, 2025, 674: 122573. doi: 10.1016/j.chemgeo.2024.122573
    [6] Liu Shengao, Wu Tianhao, Wang Ziteng, et al. Cadmium isotopes as a tracer for deep carbon recycling[J]. Earth and Planetary Science Letters, 2025, 651: 119168. doi: 10.1016/j.jpgl.2024.119168
    [7] Wu Yingzhe, Pena L D, Anderson R F, et al. Assessing neodymium isotopes as an ocean circulation tracer in the Southwest Atlantic[J]. Earth and Planetary Science Letters, 2022, 599: 117846. doi: 10.1016/j.jpgl.2022.117846
    [8] Boyle E A, Lee J M, Echegoyen Y, et al. Anthropogenic lead emissions in the ocean: The evolving global experiment[J]. Oceanography, 2014, 27(1): 69−75. doi: 10.5670/oceanog.2014.10
    [9] Gdaniec S, Roy-Barman M, Foliot L, et al. Thorium and protactinium isotopes as tracers of marine particle fluxes and deep water circulation in the Mediterranean Sea[J]. Marine Chemistry, 2018, 199: 12−23. doi: 10.1016/j.marchem.2017.12.002
    [10] Pavia F J, Cooperdock E H G, De Obeso J C, et al. Uranium isotopes as tracers of serpentinite weathering[J]. Earth and Planetary Science Letters, 2023, 623: 118434. doi: 10.1016/j.jpgl.2023.118434
    [11] Bruland K W, Franks R P, Knauer G A, et al. Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea water[J]. Analytica Chimica Acta, 1979, 105: 233−245. doi: 10.1016/S0003-2670(01)83754-5
    [12] Wu Jingfeng, Boyle E A. Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg(OH)2 coprecipitation[J]. Analytica Chimica Acta, 1998, 367(1/3): 183−191.
    [13] Biller D V, Bruland K W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS)[J]. Marine Chemistry, 2012, 130-131: 12−20. doi: 10.1016/j.marchem.2011.12.001
    [14] Søndergaard J, Asmund G, Larsen M M. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a ‘standard’ instrument setup[J]. MethodsX, 2015, 2: 323−330. doi: 10.1016/j.mex.2015.06.003
    [15] Zhu Yanbei, Itoh A, Fujimori E, et al. Multielement determination of trace metals in seawater by inductively coupled plasma mass spectrometry after tandem preconcentration using a chelating resin[J]. Bulletin of the Chemical Society of Japan, 2005, 78(4): 659−667. doi: 10.1246/bcsj.78.659
    [16] Rahmi D, Zhu Yanbei, Fujimori E, et al. Multielement determination of trace metals in seawater by ICP-MS with aid of down-sized chelating resin-packed minicolumn for preconcentration[J]. Talanta, 2007, 72(2): 600−606. doi: 10.1016/j.talanta.2006.11.023
    [17] Nelms S M, Greenway G M, Koller D. Evaluation of controlled-pore glass immobilized iminodiacetate as a reagent for automated on-line matrix separation for inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(10): 907−912. doi: 10.1039/ja9961100907
    [18] Willie S N, Iida Y, Mclaren J W. Determination of Cu, Ni, Zn, Mn, Co, Pb, Cd, and V in seawater using flow injection ICP-MS[J]. Atomic Spectroscopy, 1998, 19(3): 67−72.
    [19] Willie S N, Sturgeon R E. Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(9): 1707−1716. doi: 10.1016/S0584-8547(01)00263-4
    [20] Zhu Zuhao, Zheng Airong. Fast determination of yttrium and rare earth elements in seawater by inductively coupled plasma-mass spectrometry after online flow injection pretreatment[J]. Molecules, 2018, 23(2): 489. doi: 10.3390/molecules23020489
    [21] Milne A, Landing W, Bizimis M, et al. Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS)[J]. Analytica Chimica Acta, 2010, 665(2): 200−207. doi: 10.1016/j.aca.2010.03.027
    [22] Beck N G, Franks R P, Bruland K W. Analysis for Cd, Cu, Ni, Zn, and Mn in estuarine water by inductively coupled plasma mass spectrometry coupled with an automated flow injection system[J]. Analytica Chimica Acta, 2002, 455(1): 11−22. doi: 10.1016/S0003-2670(01)01561-6
    [23] O'Sullivan J E, Watson R J, Butler E C V. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration[J]. Talanta, 2013, 115: 999−1010. doi: 10.1016/j.talanta.2013.06.054
    [24] Warnken K W, Tang Degui, Gill G A, et al. Performance optimization of a commercially available iminodiacetate resin for the determination of Mn, Ni, Cu, Cd and Pb by on-line preconcentration inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 2000, 423(2): 265−276. doi: 10.1016/S0003-2670(00)01137-5
    [25] Sakamoto H, Yamamoto K, Shirasaki T, et al. Pretreatment method for determination of trace elements in seawater using solid phase extraction column packed with polyamino-polycarboxylic acid type chelating resin[J]. Bunseki Kagaku, 2006, 55(2): 133−139. doi: 10.2116/bunsekikagaku.55.133
    [26] Vassileva E, Wysocka I, Orani A M, et al. Off-line preconcentration and inductively coupled plasma sector field mass spectrometry simultaneous determination of Cd, Co, Cu, Mn, Ni, Pb and Zn mass fractions in seawater: procedure validation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 153: 19−27. doi: 10.1016/j.sab.2019.01.001
    [27] Liu Zhengbo, Zhang Jing, Jiang Shuo, et al. Comparison between three preconcentration resins to determine dissolved gallium in natural waters using isotope dilution and high resolution inductively coupled plasma mass spectrometry[J]. Talanta, 2023, 265: 124792. doi: 10.1016/j.talanta.2023.124792
    [28] 汤震宇, 瞿建国, 张安余, 等. UTEVA树脂分离纯化珊瑚中铀、钍的改进研究[J]. 海洋学报, 2022, 44(2): 11−20. doi: 10.12284/j.issn.0253-4193.2022.2.hyxb202202002

    Tang Zhenyu, Qu Jianguo, Zhang Anyu, et al. Modified method of separation and purification of U, Th in coral sample with UTEVA resin[J]. Haiyang Xuebao, 2022, 44(2): 11−20. doi: 10.12284/j.issn.0253-4193.2022.2.hyxb202202002
    [29] Fujimori E. Determination of Cd in seawater at ng·L-1 levels by ICP-MS: removal of Mo during chelating-resin solid-phase extraction[J]. Bunseki Kagaku, 2016, 65(5): 275−281. doi: 10.2116/bunsekikagaku.65.275
    [30] Yabutani T, Sumi H, Nakamura T, et al. Multielemental elution behavior of metal ions adsorbed on iminodiacetic acid chelating resin by using hydrogen peroxide as an eluent[J]. Analytical Sciences, 2012, 28(5): 463−468. doi: 10.2116/analsci.28.463
    [31] Millero F J. Chemical Oceanography[M]. Boca Raton: CRC Press, 2013.
    [32] Bruland K W, Lohan M C. Controls of trace metals in seawater[J]. Treatise on Geochemistry, 2003, 6: 23−47.
    [33] Norisuye K, Ezoe M, Nakatsuka S, et al. Distribution of bioactive trace metals (Fe, Co, Ni, Cu, Zn and Cd) in the Sulu Sea and its adjacent seas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(1/2): 14−37.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-04-18
  • 网络出版日期:  2025-05-15

目录

    /

    返回文章
    返回