留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珊瑚骨骼荧光记录环境变化的研究进展

江蕾蕾 黄达华 赵佰玲 余克服

江蕾蕾,黄达华,赵佰玲,等. 珊瑚骨骼荧光记录环境变化的研究进展[J]. 海洋学报,2025,47(x):1–12
引用本文: 江蕾蕾,黄达华,赵佰玲,等. 珊瑚骨骼荧光记录环境变化的研究进展[J]. 海洋学报,2025,47(x):1–12
Jiang Leilei,Huang Dahua,Zhao Bailing, et al. Research progress on coral skeleton fluorescence as an indicator of environmental changes[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Jiang Leilei,Huang Dahua,Zhao Bailing, et al. Research progress on coral skeleton fluorescence as an indicator of environmental changes[J]. Haiyang Xuebao,2025, 47(x):1–12

珊瑚骨骼荧光记录环境变化的研究进展

基金项目: 广西自然科学基金青年项目(2024JJB150060);国家重点研发计划(2023YFF0804801);广西科技基地和人才专项(桂科AD25069075);广西壮族自治区青苗人才资助科研项目(202401998);广西壮族自治区教育厅2024年度广西高校中青年教师科研基础能力提升项目(2024KY0020)。
详细信息
    作者简介:

    江蕾蕾(1995—),女,河南省新县人,助理教授,主要从事珊瑚礁地质和高分辨率环境记录研究。E-mail:jianglei@gxu.edu.cn

    通讯作者:

    余克服,教授,主要从事珊瑚礁地质、生态与环境研究。E-mail:kefuyu@scsio.ac.cn

Research progress on coral skeleton fluorescence as an indicator of environmental changes

  • 摘要: 广泛分布于热带海域的块状滨珊瑚作为高分辨率环境变化记录的理想载体,在古气候和古环境重建领域受到广泛关注。珊瑚骨骼在长波紫外线照射下发出的荧光因对陆地径流、污染物和气候事件的敏感性,成为揭示与降雨和径流量等相关的多种环境变化信息的又一手段。本文综述了珊瑚骨骼荧光物质的形成机制、测量方法、在环境重建中的应用以及当前挑战和未来发展方向。总体而言,珊瑚骨骼中的荧光信号主要来源于以富啡酸为主的陆源输入腐殖酸类物质,以及共生藻类代谢产生的类腐殖质物质。珊瑚骨骼结构和矿物特性,以及降雨、径流等环境因子的交互作用也会影响珊瑚骨骼荧光。通过高精度微取样技术与荧光分析方法的结合,科学家们已成功重建了不同时间尺度的陆地径流、降雨、人类活动等环境变化历史。基于目前国际上的研究进展,本文建议未来研究应探索新型分析技术,结合多源数据建立更精确的荧光−水文定量模型,并且加强与其他代用指标的交叉验证以建立高精度、高分辨率的全球珊瑚荧光数据库。
  • 图  1  珊瑚骨骼荧光示意图

    (a)可见光(上半部分)和紫外光(下半部分)扫描下的珊瑚岩芯剖面的数字图像示例。红色横截线代表测量绿色荧光强度的区域,1991年至2006年的峰值为原始数据的年周期。黑框显示的是1996年和1997年相对荧光强度的放大部分(右图)。在放大图像(红色)上创建了一个较小的单独横断面,以确定强度的细微波动[22]。(b)紫外光下珊瑚切片的数字增强照片表明荧光线的匹配模式[20]。(c)伯德金河的月流量与对应的珊瑚骨骼的荧光强度[16]

    Fig.  1  Schematic diagram of coral skeleton fluorescence

    (a) Example of digital images of a coral core section under visible light (upper panel) and UV light (lower panel). The red transect lines indicate the regions where green fluorescence intensity was measured, with peaks from 1991 to 2006 representing annual cycles in the raw data. The black box highlights a magnified view (right panel) of the relative luminescence intensity for 1996 and 1997. A smaller independent transect (red) was created on the zoomed-in image to resolve fine-scale intensity fluctuations[22]. (b) Digitally enhanced photograph of a coral slab under UV light, demonstrating the matching patterns of luminescent bands[20]. (c) Monthly discharge of the Burdekin River plotted against corresponding coral skeletal fluorescence intensity[16]

    图  2  珊瑚荧光形成机制示意图

    滨珊瑚、X光片和荧光带素材分别根据http://heinzkrimmer.com和Lough[26]改绘

    Fig.  2  Schematic diagram of the formation mechanism of coral fluorescence

    Porites, positive print of X-ray of slice and bright luminescent lines are from http://heinzkrimmer.com and Lough[26]

    图  3  珊瑚骨骼荧光研究的主要区域

    (a)大堡礁[19, 37, 51, 70];(b)海南岛[55];(c)台湾岛[36];(d)爪哇岛[40],马来半岛[32-33, 61]和马来西亚Sarawak[60];(e)新几内亚岛[40];(f)西奈半岛[21];(g)阿拉伯半岛[39];(h)莫纳岛[54, 57];(i)佛罗里达半岛[40]。红色的圆点表示珊瑚样品采集地

    Fig.  3  Major coral sampling sites for paleoenvironmental studies using luminescent bands and their luminescent factors

    (a) Great Barrier Reef[19, 37, 51, 70]; (b) Hainan Island[55]; (c) Taiwan Island[36]; (d) Java Island[40], Malay Peninsula[32-33, 61], Sarawak in Malaysia[60]; (e) New Guinea Island[40]; (f) Sinai Peninsula[21]; (g) Arabian Peninsula[39]; (h) Mona Island[54, 57]; (i) Florida Peninsula[40]. The red dots indicate the collection sites of corals

    图  4  1921—2011年期间大堡礁南部keppel群岛珊瑚G/B异常时间序列[51]

    (a) 6个珊瑚岩芯的月分辨率G/B异常。(b)用于构建复合记录的岩芯数量。(c)复合G/B记录和器测记录的重大洪水事件。彩色虚线代表在距离河口最近的水文站Rockhampton记录到的单次最高洪水事件。不同颜色对应水位高度(单位:米)。阴影区域对应La Niña时期

    Fig.  4  Time series of G/B anomalies for the period 1921–2011 at Kappel Islands, southern Great Barrier Reef[51]

    (a) Monthly G/B anomalies for all six cores. (b) Number of cores used to construct the composite record. (c) Long term G/B composite record, with major flood events registered by instrumental records. Color dashed lines under the profile denote the highest individual flood events registered at Rockhampton, the nearest gauging station to the river mouth. Colors refer to gauge height in m. Shaded areas correspond to La Niña periods

    图  5  珊瑚骨骼荧光记录伯德金河流量变化[75]

    (a) 1648—2011年重建的伯德金河流量,以1648–2011年平均值为基准的距平值。深蓝色线为10年高斯滤波曲线。灰色水平线分别代表相对于全记录期的第90百分位、中位数和第10百分位。(b)不同流量范围及连续子时段内重建的伯德金河流量的频率分布百分比

    Fig.  5  Coral skeletal luminescence records variations in Burdekin River discharge[75]

    (a) Reconstructed Burdekin River flow as anomalies from 1648 to 2011 average, 1648–2011. Dark blue line is 10-year Gaussian filter. Horizontal grey lines are 90th percentile, median and 10th percentile relative to whole record length. (b) Percentage frequency distributions of reconstructed Burdekin. River flows for different flow ranges and successive subperiods

  • [1] Yu Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
    [2] 余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018.

    Yu Kefu. Introduction to the Science of Coral Reefs[M]. Beijing: Science Press, 2018.
    [3] 陶士臣, 张会领, 余克服, 等. 近500年西沙群岛海面温度年际变化的珊瑚记录及其环境意义[J]. 第四纪研究, 2021, 41(2): 411−423. doi: 10.11928/j.issn.1001-7410.2021.02.10

    Tao Shichen, Zhang Huiling, Yu Kefu, et al. Annual resolution sea surface temperature reconstructed quantitatively by Porites coral growth rate in the Xishaqundao Islands during the past five centuries and their environmental significance[J]. Quaternary Sciences, 2021, 41(2): 411−423. doi: 10.11928/j.issn.1001-7410.2021.02.10
    [4] Jiang Leilei, Yu Kefu, Tao Shichen, et al. ENSO variability during the Medieval Climate Anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004173. doi: 10.1029/2020PA004173
    [5] Felis T, Suzuki A, Kuhnert H, et al. Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean[J]. Geology, 2009, 37(6): 527−530. doi: 10.1130/G25581A.1
    [6] Chen Xuefei, D'Olivo J P, Wei Gangjian, et al. Anthropogenic ocean warming and acidification recorded by Sr/Ca, Li/Mg, δ11B and B/Ca in Porites coral from the Kimberley region of northwestern Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 50−59. doi: 10.1016/j.palaeo.2019.04.033
    [7] Tanzil J T I, Goodkin N F, Sin T M, et al. Multi-colony coral skeletal Ba/Ca from Singapore’s turbid urban reefs: relationship with contemporaneous in-situ seawater parameters[J]. Geochimica et Cosmochimica Acta, 2019, 250: 191−208. doi: 10.1016/j.gca.2019.01.034
    [8] Sun Yinan, Jiang Wei, Yu Kefu, et al. High‐resolution coral records of Cadmium in surface seawater: biogeochemical cycling and a novel proxy for winter monsoon[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(11): e2022GC010600. doi: 10.1029/2022GC010600
    [9] Jiang Wei, Yu Kefu, Song Yinxian, et al. Annual REE signal of East Asian Winter monsoon in surface seawater in the northern South China Sea: evidence from a century‐long Porites coral record[J]. Paleoceanography and Paleoclimatology, 2018, 33(2): 168−178. doi: 10.1002/2017PA003267
    [10] Jiang Leilei, Yu Kefu, Tao Shichen, et al. Modulation of East Asian monsoon strength by ENSO during the warm periods of the late Holocene: evidence from Porites corals in the northern South China Sea[J]. Global and Planetary Change, 2023, 225: 104136. doi: 10.1016/j.gloplacha.2023.104136
    [11] Han Tao, Yu Kefu, Yan Hongqiang, et al. Links between the coral δ13C record of primary productivity variations in the northern South China Sea and the East Asian Winter monsoon[J]. Geophysical Research Letters, 2019, 46(24): 14586−14594. doi: 10.1029/2019GL085030
    [12] Li Xiaohua, Wang Xiaowei, Liu Chuanyu, et al. Traces of the 1997 Indonesian wildfires in the marine environment from a network of coral δ13C records[J]. Geophysical Research Letters, 2020, 47(22): e2020GL090383. doi: 10.1029/2020GL090383
    [13] Chen Xuefei, Deng Wenfeng, Kang Huiling, et al. A replication study on coral δ11B and B/Ca and their variation in modern and fossil Porites: implications for coral calcifying fluid chemistry and seawater pH changes over the last millennium[J]. Paleoceanography and Paleoclimatology, 2021, 36(10): e2021PA004319. doi: 10.1029/2021PA004319
    [14] Cole J E, Fairbanks R G, Shen G T. Recent variability in the southern oscillation: isotopic results from a Tarawa Atoll coral[J]. Science, 1993, 260(5115): 1790−1793. doi: 10.1126/science.260.5115.1790
    [15] Felis T, Pätzold J. Corals as climate archive[M]//Fischer H, Kumke T, Lohmann G, et al. The Climate in Historical Times. Berlin, Heidelberg: Springer, 2004: 91−108.
    [16] Isdale P. Fluorescent bands in massive corals record centuries of coastal rainfall[J]. Nature, 1984, 310(5978): 578−579. doi: 10.1038/310578a0
    [17] Wild F J, Jones A C, Tudhope A W. Investigation of luminescent banding in solid coral: the contribution of phosphorescence[J]. Coral Reefs, 2000, 19(2): 132−140. doi: 10.1007/s003380000084
    [18] Lough J M, Barnes D J. Intra-annual timing of density band formation of Porites coral from the central Great Barrier Reef[J]. Journal of Experimental Marine Biology and Ecology, 1990, 135(1): 35−57. doi: 10.1016/0022-0981(90)90197-K
    [19] Leonard N D, Welsh K J, Lough J M, et al. Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia[J]. Paleoceanography, 2016, 31(9): 1248−1260. doi: 10.1002/2016PA002967
    [20] Lough J M, Llewellyn L E, Lewis S E, et al. Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence[J]. Paleoceanography, 2014, 29(6): 581−594. doi: 10.1002/2014PA002630
    [21] Klein R, Loya Y, Gvirtzman G, et al. Seasonal rainfall in the Sinai Desert during the late Quaternary inferred from fluorescent bands in fossil corals[J]. Nature, 1990, 345(6271): 145−147. doi: 10.1038/345145a0
    [22] Grove C A, Nagtegaal R, Zinke J, et al. River runoff reconstructions from novel spectral luminescence scanning of massive coral skeletons[J]. Coral Reefs, 2010, 29(3): 579−591. doi: 10.1007/s00338-010-0629-y
    [23] Grove C A, Zinke J, Scheufen T, et al. Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar[J]. Biogeosciences, 2012, 9(8): 3063−3081. doi: 10.5194/bg-9-3063-2012
    [24] Matthews B J H, Jones A C, Theodorou N K, et al. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs[J]. Marine Chemistry, 1996, 55(3/4): 317−332.
    [25] Barnes D J, Taylor R B. On the nature and causes of luminescent lines and bands in coral skeletons[J]. Coral Reefs, 2001, 19(3): 221−230. doi: 10.1007/PL00006958
    [26] Lough J M. Climate records from corals[J]. WIREs Climate Change, 2010, 1(3): 318−331. doi: 10.1002/wcc.39
    [27] Sharma A, Anthal R. Humic substances in aquatic ecosystems: a review[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2016, 5(10): 18462−18470.
    [28] Nagao S, Matsunaga T, Suzuki Y, et al. Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection[J]. Water Research, 2003, 37(17): 4159−4170. doi: 10.1016/S0043-1354(03)00377-4
    [29] Wagner M, Schmidt W, Imhof L, et al. Characterization and quantification of humic substances 2D-Fluorescence by usage of extended size exclusion chromatography[J]. Water Research, 2016, 93: 98−109. doi: 10.1016/j.watres.2016.01.050
    [30] Boto K, Isdale P. Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone[J]. Nature, 1985, 315(6018): 396−397. doi: 10.1038/315396a0
    [31] Susic M, Boto K, Isdale P. Fluorescent humic acid bands in coral skeletons originate from terrestrial runoff[J]. Marine Chemistry, 1991, 33(1/2): 91−104.
    [32] Kaushal N, Yang Liudongqing, Tanzil J T I, et al. Sub-annual fluorescence measurements of coral skeleton: relationship between skeletal luminescence and terrestrial humic-like substances[J]. Coral Reefs, 2020, 39(5): 1257−1272. doi: 10.1007/s00338-020-01959-x
    [33] Tanzil J T I, Lee J N, Brown B E, et al. Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia[J]. Limnology and Oceanography, 2016, 61(6): 2003−2026. doi: 10.1002/lno.10350
    [34] 彭子成, 谢端, 何学贤, 等. 海南岛滨珊瑚的荧光强度与降雨量和径流量的相关性研究[J]. 自然科学进展, 2001, 11(8): 840−844.

    Peng Zicheng, Xie Rui, He Xuexian, et al. A study on the correlation between fluorescence intensity of coastal corals in Hainan Island and rainfall and runoff[J]. Progress in Natural Science, 2001, 11(8): 840−844. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [35] Llewellyn L E, Everingham Y L, Lough J M. Pharmacokinetic modelling of multi-decadal luminescence time series in coral skeletons[J]. Geochimica et Cosmochimica Acta, 2012, 83: 263−271. doi: 10.1016/j.gca.2011.12.028
    [36] Fang L S, Chou Y C. Concentration of fulvic acid in the growth bands of hermatypic corals in relation to local precipitation[J]. Coral Reefs, 1992, 11(4): 187−191. doi: 10.1007/BF00301991
    [37] Lough J, Barnes D, McAllister F. Luminescent lines in corals from the Great Barrier Reef provide spatial and temporal records of reefs affected by land runoff[J]. Coral Reefs, 2002, 21(4): 333−343. doi: 10.1007/s00338-002-0253-6
    [38] Jones P D, Briffa K R, Osborn T J, et al. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects[J]. The Holocene, 2009, 19(1): 3−49. doi: 10.1177/0959683608098952
    [39] Tudhope A W, Lea D W, Shimmield G B, et al. Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from southern Oman[J]. Palaios, 1996, 11(4): 347−361. doi: 10.2307/3515245
    [40] Scoffin T P, Tudhope A W, Brown B E. Fluorescent and skeletal density banding in Porites lutea from Papua New Guinea and Indonesia[J]. Coral Reefs, 1989, 7(4): 169−178. doi: 10.1007/BF00301595
    [41] Smithers S G, Woodroffe C D. Coral microatolls and 20th century sea level in the eastern Indian Ocean[J]. Earth and Planetary Science Letters, 2001, 191(1/2): 173−184.
    [42] Willey J D. The effect of seawater magnesium on natural fluorescence during estuarine mixing, and implications for tracer applications[J]. Marine Chemistry, 1984, 15(1): 19−45. doi: 10.1016/0304-4203(84)90036-7
    [43] Milne P J, Swart P K. Fiber-optic-based sensing of banded luminescence in corals[J]. Applied Spectroscopy, 1994, 48(10): 1282−1284. doi: 10.1366/0003702944027453
    [44] Carricart-Ganivet J P, Lough J M, Barnes D J. Growth and luminescence characteristics in skeletons of massive Porites from a depth gradient in the central Great Barrier Reef[J]. Journal of Experimental Marine Biology and Ecology, 2007, 351(1/2): 27−36.
    [45] MacRae C M, Wilson N C. Luminescence database I-Minerals and materials[J]. Microscopy and Microanalysis, 2008, 14(2): 184−204. doi: 10.1017/S143192760808029X
    [46] Prouty N G, Storlazzi C D, McCutcheon A L, et al. Historic impact of watershed change and sedimentation to reefs along west-central Guam[J]. Coral Reefs, 2014, 33(3): 733−749. doi: 10.1007/s00338-014-1166-x
    [47] Barnes D J, Taylor R B. On the nature and causes of luminescent lines and bands in coral skeletons: II. Contribution of skeletal crystals[J]. Journal of Experimental Marine Biology and Ecology, 2005, 322(2): 135−142. doi: 10.1016/j.jembe.2005.02.008
    [48] Ramseyer K, Miano T M, D’Orazio V, et al. Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons[J]. Organic Geochemistry, 1997, 26(5/6): 361−378.
    [49] Hendy E J, Gagan M K, Lough J M. Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia[J]. The Holocene, 2003, 13(2): 187−199. doi: 10.1191/0959683603hl606rp
    [50] Lough J M. Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century[J]. Paleoceanography, 2011, 26(2): PA2201.
    [51] Rodriguez-Ramirez A, Grove C A, Zinke J, et al. Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef[J]. PLoS One, 2014, 9(1): e84305. doi: 10.1371/journal.pone.0084305
    [52] 李淑, 余克服, 施祺, 等. 南海北部珊瑚共生虫黄藻密度的种间与空间差异及其对珊瑚礁白化的影响[J]. 科学通报, 2007, 52(22): 2655−2662.

    Li Shu, Yu Kefu, Shi Qi, et al. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching[J]. Chinese Science Bulletin, 2008, 53(2): 295−303.
    [53] Smith III T J, Hudson H J, Robblee M B, et al. Freshwater flow from the Everglades to Florida Bay: a historical reconstruction based on fluorescent banding in the coral Solenastrea bournoni[J]. Bulletin of Marine Science, 1989, 44(1): 274−282.
    [54] Nyberg J. Luminescence intensity in coral skeletons from Mona Island in the Caribbean Sea and its Link to precipitation and wind speed[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 360(1793): 749−766. doi: 10.1098/rsta.2001.0963
    [55] Peng Zicheng, He Xuexian, Zhang Zhaofeng, et al. Correlation of coral fluorescence with nearshore rainfall and runoff in Hainan Island, South China Sea[J]. Progress in Natural Science, 2002, 12(1): 41−44.
    [56] Susic M, Boto K G. High-performance liquid chromatographic determination of humic acid in environmental samples at the nanogram level using fluorescence detection[J]. Journal of Chromatography A, 1989, 482(1): 175−187. doi: 10.1016/S0021-9673(01)93218-2
    [57] Barnes D J, Taylor R B, Lough J M. Measurement of luminescence in coral skeletons[J]. Journal of Experimental Marine Biology and Ecology, 2003, 295(1): 91−106. doi: 10.1016/S0022-0981(03)00274-0
    [58] Lough J M. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia[J]. Paleoceanography, 2007, 22(2): PA2218.
    [59] Grove C A, Zinke J, Peeters F, et al. Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708[J]. Climate of the Past, 2013, 9(2): 641−656. doi: 10.5194/cp-9-641-2013
    [60] Kaushal N, Sanwlani N, Tanzil J T I, et al. Coral skeletal luminescence records changes in terrestrial chromophoric dissolved organic matter in tropical coastal waters[J]. Geophysical Research Letters, 2021, 48(8): e2020GL092130. doi: 10.1029/2020GL092130
    [61] Kaushal N, Tanzil J T I, Zhou Yongli, et al. Environmental calibration of coral luminescence as a proxy for terrigenous dissolved organic carbon concentration in tropical coastal oceans[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(10): e2022GC010529. doi: 10.1029/2022GC010529
    [62] Coble P G. Marine bacteria as a source of dissolved fluorescence in the ocean[D]. Cambridge: Massachusetts Institute of Technology, 1989.
    [63] Sinclair D J, McCulloch M T. Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers?[J] Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214(1/2): 155−174.
    [64] Jupiter S, Roff G, Marion G, et al. Linkages between coral assemblages and coral proxies of terrestrial exposure along a cross-shelf gradient on the southern Great Barrier Reef[J]. Coral Reefs, 2008, 27(4): 887−903. doi: 10.1007/s00338-008-0422-3
    [65] 贺剑峰, 彭子成, 何学贤, 等. 珊瑚荧光的古降水记录[J]. 海洋地质与第四纪地质, 2001, 21(2): 63−68.

    He Jianfeng, Peng Zicheng, He Xuexian, et al. Paleo-precipitation records of fluorescent bands of coral[J]. Marine Geology & Quaternary Geology, 2001, 21(2): 63−68.
    [66] Isdale P, Kotwicki V. Lake Eyre and the Great Barrier Reef: a paleohydrological ENSO (El Nino/ Southern Oscillation) connection[J]. South Australian Geographical Journal, 1987, 87: 44−55.
    [67] Kotwicki V, Isdale P. Hydrology of lake Eyre, Australia: El Niño link[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 84(1/4): 87−98.
    [68] Isdale P J, Stewart B J, Tickle K S, et al. Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia[J]. The Holocene, 1998, 8(1): 1−8. doi: 10.1191/095968398670905088
    [69] Carr N, Davis C E, Blackbird S, et al. Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea[J]. Progress in Oceanography, 2019, 177: 101929. doi: 10.1016/j.pocean.2018.02.025
    [70] D'Olivo J P, McCulloch M. Impact of European settlement and land use changes on Great Barrier Reef river catchments reconstructed from long-term coral Ba/Ca records[J]. Science of the Total Environment, 2022, 830: 154461. doi: 10.1016/j.scitotenv.2022.154461
    [71] Nyberg J, Malmgren B A, Winter A, et al. Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years[J]. Nature, 2007, 447(7145): 698−701. doi: 10.1038/nature05895
    [72] Reed E V, Cole J E, Lough J M, et al. Linking climate variability and growth in coral skeletal records from the Great Barrier Reef[J]. Coral Reefs, 2019, 38(1): 29−43. doi: 10.1007/s00338-018-01755-8
    [73] D’Arrigo R, Baker P, Palmer J, et al. Experimental reconstruction of monsoon drought variability for Australasia using tree rings and corals[J]. Geophysical Research Letters, 2008, 35(12): L12709.
    [74] Kayanne H, Iijima H, Nakamura N, et al. Indian Ocean Dipole index recorded in Kenyan coral annual density bands[J]. Geophysical Research Letters, 2006, 33(19): L19709.
    [75] Lough J M, Lewis S E, Cantin N E. Freshwater impacts in the central Great Barrier Reef: 1648-2011[J]. Coral Reefs, 2015, 34(3): 739−751. doi: 10.1007/s00338-015-1297-8
    [76] Tanzil J T I, Goodkin N F, Sin T M, et al. Multi-colony coral skeletal Ba/Ca from Singapore's turbid urban reefs: relationship with contemporaneous in-situ seawater parameters[J]. Geochimica et Cosmochimica Acta, 2019, 250: 191−208. (查阅网上资料, 本条文献与第7条文献重复, 请确认)
    [77] Lewis S E, Lough J M, Cantin N E, et al. A critical evaluation of coral Ba/Ca, Mn/Ca and Y/Ca ratios as indicators of terrestrial input: new data from the Great Barrier Reef, Australia[J]. Geochimica et Cosmochimica Acta, 2018, 237: 131−154. doi: 10.1016/j.gca.2018.06.017
    [78] DiSalvo L H. Isolation of bacteria from the corallum of Porites lobata (Vaughn) and its possible significance[J]. American Zoologist, 1969, 9(3): 735−740. doi: 10.1093/icb/9.3.735
    [79] Bak R P M, Lanne R W P M. Annual black bands in skeletons of reef corals (Scleractinia)[J]. Marine Ecology Progress Series, 1987, 38: 169−175. doi: 10.3354/meps038169
    [80] Nagtegaal R, Grove C A, Kasper S, et al. Spectral luminescence and geochemistry of coral aragonite: effects of whole-core treatment[J]. Chemical Geology, 2012, 318-319: 6-15.
    [81] Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review[J]. River Research and Applications, 2007, 23(6): 631−649. doi: 10.1002/rra.1005
  • 加载中
图(5)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-23
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-09-05

目录

    /

    返回文章
    返回