Study on effect of exogenous microbial consortia on lipid variations during the degradation of Ulva prolifera in seawater system
-
摘要: 通过一系列海水培养实验,模拟外源微生物影响下浒苔在近海海域的降解情况。通过追踪培养体系中浒苔脂类生物标志物随培养时间的变化,探究外源微生物影响下浒苔在海水中的降解机制。结果表明,浒苔中不同存在形态的脂肪酸与中性脂在添加外源降解微生物与未添加外源微生物的培养体系其含量均呈现为先快速下降后缓慢下降或保持稳定的趋势。在外源微生物的影响下,浒苔脂肪酸与中性脂的降解率均有不同程度的提升。应用多元G(multi-G)模型对几种典型浒苔脂肪酸和中性脂的降解过程进行拟合,结果显示,这些脂类化合物在培养体系中都可以分为降解较快和较慢的部分,在添加外源微生物菌群的情况下,其降解速率均有不同程度的提升,幅度在20%−30%。在外源环境微生物的影响下,不同种类浒苔脂肪酸的降解率与降解速率没有显著差别。在海水中,结合态脂类化合物的降解速率与降解率均显著高于其游离态,显示浒苔脂类化合物的存在形态对其降解过程有显著影响。外源微生物的加入提高了浒苔脂类化合物降解较慢的部分的降解速率,从而在整体上促进了浒苔的降解。Abstract: A series of seawater culture experiments were conducted to simulate the degradation of Ulva prolfiera in coastal area under the influence of exogenous degradation microbial consortia The degradation mechanism of Ulva prolifera in seawater under the influence of the exogenous degradation microbial consortia was investigated by tracking the time-dependent changes of lipid biomarkers in culture system. The results showed that for most of the fatty acids (14:0, i-15:0 + a-15:0, 16:0, 16:1ω7, 17:0, 18:0, 18:1ω7, 18:1ω9, 18:3, 18:4, 20:0, 22:0) and neutral lipids of Ulva Prolifera in different forms, their contents presented trends of first rapid decline and followed by a slow decline or maintain stability in the culture system with and without exogenous microbial consortia. Under the influence of exogenous microbial consortia, the degradation efficiency of fatty acid was generally increased by 10%−20%, while that of neutral lipids increased by 15−25%. The multi-G model was applied to fit the degradation processes of several fatty acids and neutral lipids, the results showed that the lipids could be divided into fast and slow degradation fractions in the culture system, and their degradation rates were improved in different degrees, with the range of 20% to 30% with the addition of the exogenous microbial consortia. Under the influence of the exogenous microbial consortia, there was no significant difference in the degradation efficiency and rates of different fatty acids in Ulva prolifera. In seawater, the degradation efficiency and rates of lipids in bound forms were significantly higher than that of their free forms, indicating that the existence forms of lipids of Ulva prolifera had significant effect on their degradation processes. The addition of exogenous degradation microbial consortia increased the degradation rate constants of the slow degradation fractions of the lipids in Ulva Prolifera, thereby promoted its overall degradation .
-
图 6 浒苔各饱和脂肪酸中游离态部分含量、结合态部分含量与它们的总含量随培养时间变化情况。图中的点为实测结果,曲线为G-model模拟结果。初始值为两组数据实际初始值的平均值,误差棒根据这两组数据计算获得
Fig. 6 Time-dependent variations profiles of the contents of free, bound, and total saturated fatty acids in the Ulva prolifera. In the panels, the points represent the measured results, and the curves represent the G-model simulation results. The initial value is the average of the actual initial values from the two datasets, and the error bars are calculated based on these two datasets
图 7 浒苔各不饱和脂肪酸中游离态部分含量、结合态部分含量与它们的总含量随培养时间变化情况。图中的点为实测结果,曲线为G-model模拟结果。初始值为两组数据实际初始值的平均值,误差棒根据这两组数据计算获得。
Fig. 7 Time-dependent variations profiles of the contents of free, bound, and total unsaturated fatty acids in the Ulva prolifera. In the panels, the points represent the measured results, and the curves represent the G-model simulation results. The initial value is the average of the actual initial values from the two datasets, and the error bars are calculated based on these two datasets.
图 8 浒苔细菌脂肪酸中游游离态部分含量、结合态部分含量与它们的总含量随培养时间变化情况。图中的点为实测结果,曲线为G-model模拟结果。初始值为两组数据实际初始值的平均值,误差棒根据这两组数据计算获得。
Fig. 8 Time-dependent variations profiles of the contents of free, bound, and total bacterial fatty acids in the Ulva prolifera. In the panels, the points represent the measured results, and the curves represent the G-model simulation results. The initial value is the average of the actual initial values from the two datasets, and the error bars are calculated based on these two datasets.
图 9 浒苔各中性脂中游离态部分、结合态部分含量与它们的总含量随培养时间变化情况。图中的点为实测结果,曲线为G-model模拟结果。初始值为两组数据实际初始值的平均值,误差棒根据这两组数据计算获得
Fig. 9 Time-dependent variations profiles of the contents of free, bound, and total neutral lipids in the Ulva prolifera. In the panels, the points represent the measured results, and the curves represent the G-model simulation results. The initial value is the average of the actual initial values from the two datasets, and the error bars are calculated based on these two datasets
图 10 浒苔脂肪酸与中性脂中游离态部分、结合态部分含量以及它们的总含量随培养时间变化情况。图中的点为实测结果,曲线为G-model模拟结果。初始值为两组数据实际初始值的平均值,误差棒根据这两组数据计算获得
Fig. 10 Time-dependent variations profiles of the contents of the free and bound fractions of the fatty acids and the neutral lipids and their respective total contents in the Ulva prolifera. In the panels, the points represent measured results, and the curves represent the G-model simulation results. The initial value is the average of the actual initial values from the two datasets, and the error bars are calculated based on these two datasets
表 1 不同浒苔脂肪酸的降解率(降解率为负值表明含量增加)
Tab. 1 Degradation efficiencies of different fatty acids in the Ulva prolifera (negative degradation efficiencies indicate an increase in the content)
脂肪酸种类 未加菌组降解率/% 加菌组降解率/% 14:0 游离态 40.2 89.1 结合态 86.9 93.5 总含量 70.5 90.6 16:0 游离态 64.0 91.6 结合态 84.6 92.9 总含量 70.0 91.9 16:1ω7 游离态 42.8 92.3 结合态 99.9 93.9 总含量 53.8 92.7 18:0 游离态 38.2 91.7 结合态 85.6 94.2 总含量 81.7 92.1 18:1ω7 游离态 52.6 78.9 结合态 87.5 80.8 总含量 68.3 79.1 18:3 游离态 79.5 87.6 结合态 82.9 84.9 总含量 79.7 86.9 20:0 游离态 −25.5 −20.7 结合态 94.2 91.3 总含量 71.3 80.1 22:0 游离态 77.2 92.7 结合态 77.8 92.3 总含量 77.6 92.6 表 2 两种浒苔中性脂的降解率
Tab. 2 Degradation efficiencies of the two types of the neutral lipids in the Ulva prolifera
脂肪酸种类 未加菌组降解率/% 加菌组降解率/% 植醇 游离态 32.8 52.1 结合态 21.1 78.3 总含量 31.1 58.6 28-异褐藻
甾醇游离态 33.8 55.4 结合态 69.8 97.2 总含量 31.6 62.3 表 3 培养体系不同浒苔脂类化合物的降解速率常数
Tab. 3 Degradation rate constants of the different lipids in the Ulva prolifera under the cultivation system
脂肪酸种类 未加菌组 加菌组 k1/(d−1) k2/(d−1) kav/(d−1) r2 k1/(d−1) k2/(d−1) kav/(d−1) r2 14:0 游离态 - - - - - - 结合态 2.17 0.02 1.89 0.96 4.71 0.03 4.20 0.99 总含量 1.00 0.01 0.65 0.98 1.64 0.02 1.19 0.98 16:0 游离态 2.12 0.02 1.18 0.95 0.28 0.06 0.19 0.94 结合态 4.13 0.02 3.34 0.95 4.88 0.00 4.07 0.98 总含量 2.71 0.02 2.63 0.96 4.16 0.02 2.64 0.98 16:1ω7 游离态 2.96 0.02 1.30 0.97 0.51 0.10 0.28 0.99 结合态 6.27 0.06 5.47 0.97 5.95 0.41 5.27 0.98 总含量 4.66 0.05 4.35 0.99 2.27 0.23 1.84 0.97 18:0 游离态 7.90 0.02 3.82 0.96 0.21 0.21 0.21 0.97 结合态 5.06 0.03 3.97 0.96 5.29 0.08 4.54 0.99 总含量 6.08 0.05 3.83 0.98 1.95 0.14 1.46 0.98 18:1ω7 游离态 2.84 0.02 1.10 0.95 0.13 0.13 0.13 0.96 结合态 4.86 0.03 3.99 0.96 4.92 0.00 3.88 0.98 总含量 3.55 0.03 1.27 0.93 3.46 0.04 2.07 0.98 18:3 游离态 5.00 0.02 3.97 0.99 3.66 0.06 2.74 0.97 结合态 3.06 0.03 2.15 0.96 2.27 0.00 1.93 0.98 总含量 3.23 0.01 0.98 0.99 2.32 0.04 2.06 0.99 20:0 游离态 - - - - - - - - 结合态 4.49 0.07 3.88 0.97 5.35 0.02 4.76 0.99 总含量 1.38 0.01 0.94 0.97 1.80 0.04 1.24 0.96 22:0 游离态 2.97 0.00 2.27 0.97 0.79 0.17 0.45 0.99 结合态 2.38 0.03 1.62 0.98 3.79 0.08 3.06 0.97 总含量 2.70 0.00 2.03 0.99 2,78 0.11 2.43 0.97 植醇 游离态 1.57 0.01 0.24 0.90 0.58 0.06 0.35 0.92 结合态 0.67 0.04 0.38 0.94 1.76 0.01 0.89 0.99 总含量 0.99 0.01 0.32 0.93 1.05 0.02 0.69 0.94 28-异褐
藻甾醇游离态 1.83 0.01 0.48 0.91 1.43 0.01 0.70 0.96 结合态 0.92 0.05 0.43 0.96 1.79 0.16 1.49 0.99 总含量 1.16 0.02 0.47 0.92 1.54 0.04 0.91 0.97 *:r2是G-模型模拟计算结果和实际实验结果的相关系数,下同。 表 4 浒苔总脂肪酸与总中性脂的降解速率常数与降解率
Tab. 4 Degradation rate constants and degradation efficiencies of the total fatty acids and the total neutral lipids in the Ulva prolifera
化合物种类 未加菌组 加菌组 k1/
(d−1)k2/
(d−1)kav/
(d−1)r2 降解
率/%k1/
(d−1)k2/
(d−1)kav/
(d−1)r2 降解
率/%脂肪酸 游离态 1.60 0.01 0.91 0.97 58.1 0.14 0.14 0.14 0.98 90.8 结合态 2.97 0.02 0.65 0.96 83.9 2.73 0.05 0.44 0.99 89.0 总含量 2.63 0.01 0.55 0.98 67.2 1.43 0.08 0.90 0.98 90.2 中性脂 游离态 1.79 0 0.47 0.96 41.1 1.79 0.02 0.75 0.95 50.9 结合态 0.35 0.03 0.10 0.98 43.0 0.45 0.06 0.34 0.99 92.8 总含量 2.63 0.01 0.55 0.95 41.3 2.28 0.03 0.95 0.96 53.7 -
[1] 王建伟, 阎斌伦, 林阿朋, 等. 浒苔(Enteromorpha prolifera)生长及孢子释放的生态因子研究[J]. 海洋通报, 2007, 26(2): 60−65.Wang Jianwei, Yan Binlun, Lin Apeng, et al. Ecological factor research on the growth and induction of spores release in Enteromorpha Prolifera (Chlorophyta)[J]. Marine Science Bulletin, 2007, 26(2): 60−65. [2] Zheng Longxiao, Wu Mengquan, Zhao Jie, et al. Effects of Ulva prolifera dissipation on the offshore environment based on remote sensing images and field monitoring data[J]. Acta Oceanologica Sinica, 2023, 42(6): 112−120. doi: 10.1007/s13131-022-2129-7 [3] Fan Qingxin, Shi Kunpeng, Zhan Min, et al. Acute damage from the degradation of Ulva prolifera on the environmental microbiota, intestinal microbiota and transcriptome of Japanese flounder Paralichthys olivaceus[J]. Environmental Pollution, 2022, 302: 119022. doi: 10.1016/j.envpol.2022.119022 [4] 颜天, 于仁成, 周名江, 等. 黄海海域大规模绿潮成因与应对策略——“鳌山计划”研究进展[J]. 海洋与湖沼, 2018, 49(5): 950−958. doi: 10.11693/hyhz20180700156Yan Tian, Yu Rencheng, Zhou Mingjiang, et al. Mechanism of massive formation and prevention strategy against large-scale green tides in the south yellow sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 950−958. doi: 10.11693/hyhz20180700156 [5] Dong Shuhang, Xin Yu, Liu Chunying, et al. Two treatment methods on Ulva prolifera bloom result in distinctively different ecological effects in coastal environment[J]. Frontiers in Marine Science, 2023, 10: 1084519. doi: 10.3389/fmars.2023.1084519 [6] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2): 1−13.Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2): 1−13. [7] Xia Zhangyi, Yuan Huanqing, Liu Jinlin, et al. A review of physical, chemical, and biological green tide prevention methods in the Southern Yellow Sea[J]. Marine Pollution Bulletin, 2022, 180: 113772. doi: 10.1016/j.marpolbul.2022.113772 [8] 朱强, 夏艳秋, 顾冬莹, 等. 浒苔降解菌分离筛选与鉴定[J]. 安徽农业科学, 2017, 45(32): 152−155.Zhu Qiang, Xia Yanqiu, Gu Dongying, et al. Isolation, screening and identification of Enteromorpha prolifera degrading bacterial strain[J]. Journal of Anhui Agricultural Sciences, 2017, 45(32): 152−155. [9] 谢罗瀚, 韩学凤, 张志标, 等. 源自黄斑篮子鱼肠道菌群的B30菌株降解浒苔多糖的活性研究[J]. 韩山师范学院学报, 2016, 37(6): 49−55.Xie Luohan, Han Xuefeng, Zhang Zhibiao, et al. A study of Enteromorpha polysaccharides-degraded ability of strain B30 from Siganus Oramin intestina[J]. Journal of Hanshan Normal University, 2016, 37(6): 49−55. [10] 宁利敏, 姚忠, 朱本伟, 等. 浒苔多糖的结构、制备与降解研究进展[J]. 现代食品科技, 2022, 38(6): 343−353.Ning Limin, Yao Zhong, Zhu Benwei, et al. Research progress on the structure, preparation and degradation of Enteromorpha polysaccharides[J]. Modern Food Science and Technology, 2022, 38(6): 343−353. [11] Hebbale D, Bhargavi R, Ramachandra T V. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria[J]. Heliyon, 2019, 5(3): e01372. doi: 10.1016/j.heliyon.2019.e01372 [12] Li Yinping, Cui Jiefen, Zhang Gaoli, et al. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass[J]. Bioresource Technology, 2016, 214: 144−149. doi: 10.1016/j.biortech.2016.04.090 [13] Li Bing, Liu Song, Xing Ronge, et al. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities[J]. Carbohydrate Polymers, 2013, 92(2): 1991−1996. doi: 10.1016/j.carbpol.2012.11.088 [14] Ischebeck T, Krawczyk H E, Mullen R T, et al. Lipid droplets in plants and algae: distribution, formation, turnover and function[J]. Seminars in Cell & Developmental Biology, 2020, 108: 82−93. [15] Gosch B J, Magnusson M, Paul N A, et al. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts[J]. GCB Bioenergy, 2012, 4(6): 919−930. doi: 10.1111/j.1757-1707.2012.01175.x [16] El-Fatah Abomohra A, El-Naggar A H, Baeshen A A. Potential of macroalgae for biodiesel production: screening and evaluation studies[J]. Journal of Bioscience and Bioengineering, 2018, 125(2): 231−237. doi: 10.1016/j.jbiosc.2017.08.020 [17] Nobles Jr D R, Manning S R. Extraction and characterization of lipids from macroalgae[J]. Methods in Molecular Biology, 2019, 1995: 131−140. [18] He Yunhong, Sun Chengjun, Li Wenjuan, et al. Degradation of lipids in seasonal hypoxic seawater under different oxygen saturation[J]. Journal of Oceanology and Limnology, 2018, 36(5): 1570−1585. doi: 10.1007/s00343-018-7110-0 [19] Geng Huixia, Yu Rencheng, Chen Zhenfan, et al. Analysis of sterols in selected bloom-forming algae in China[J]. Harmful Algae, 2017, 66: 29−39. doi: 10.1016/j.hal.2017.04.008 [20] Ding Haibing, Sun Mingyi. Biochemical degradation of algal fatty acids in oxic and anoxic sediment-seawater interface systems: effects of structural association and relative roles of aerobic and anaerobic bacteria[J]. Marine Chemistry, 2005, 93(1): 1−19. doi: 10.1016/j.marchem.2004.04.004 [21] 耿慧霞, 于仁成, 颜天, 等. 应用甾醇类生物标志物追踪绿潮后期漂浮绿藻沉降区的方法[J]. 海洋与湖沼, 2018, 49(5): 1094−1102.Geng Huixia, Yu Rencheng, Yan Tian, et al. Using sterol biomarkers to trace deposition areas of floating green algae after green tides[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1094−1102. [22] 刘英霞, 常显波, 王桂云, 等. 浒苔的危害及防治[J]. 安徽农业科学, 2009, 37(20): 9566−9567.Liu Yingxia, Chang Xianbo, Wang Guiyun, et al. Harm and prevention of Entermorpha prolifera[J]. Journal of Anhui Agricultural Sciences, 2009, 37(20): 9566−9567. [23] 彭全材, 宋金明, 张全斌, 等. 四种绿藻和四种褐藻脂肪酸组成的比较研究[J]. 海洋科学, 2014, 38(4): 27−33. doi: 10.11759/hykx20130530003Peng Quancai, Song Jinming, Zhang Quanbin, et al. Comparison of fatty acid compositions of four green algae and four brown algae[J]. Marine Sciences, 2014, 38(4): 27−33. doi: 10.11759/hykx20130530003 [24] He Yunhong, Sun Chengjun, Li Wenjuan, et al. Degradation of lipids in seasonal hypoxic seawater under different oxygen saturation[J]. Journal of Oceanology and Limnology, 2018, 36(5): 1570−1585. (查阅网上资料, 本条文献与第18条文献重复, 请确认) [25] Sun Mingyi, Wakeham S G, Lee C. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 341−355. doi: 10.1016/S0016-7037(96)00315-8 [26] Qu Tongfei, Zhao Xinyu, Hao Ya, et al. Ecological effects of Ulva prolifera green tide on bacterial community structure in Qingdao offshore environment[J]. Chemosphere, 2020, 244: 125477. doi: 10.1016/j.chemosphere.2019.125477 [27] Sun Mingyi, Shi Wei, Lee R F. Lipid-degrading enzyme activities associated with distribution and degradation of fatty acids in the mixing zone of Altamaha estuarine sediments[J]. Organic Geochemistry, 2000, 31(9): 889−902. doi: 10.1016/S0146-6380(00)00051-6 [28] Harvey H R, Tuttle J H, Bell J T. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions[J]. Geochimica et Cosmochimica Acta, 1995, 59(16): 3367−3377. doi: 10.1016/0016-7037(95)00217-N [29] 尹琳琳, 杨佰娟, 郑立, 等. 浒苔脂肪酸前处理方法优化及GC/MS分析[J]. 海洋科学, 2010, 34(11): 46−50.Yin Linlin, Yang Baijuan, Zheng Li, et al. Optimization and analyzation of fatty acids pre-treatment of Enteromorpha prolifera by GC/MS[J]. Marine Sciences, 2010, 34(11): 46−50. [30] Generalić Mekinić I, Čagalj M, Tabanelli G, et al. Seasonal changes in essential oil constituents of Cystoseira compressa: first report[J]. Molecules, 2021, 26(21): 6649. doi: 10.3390/molecules26216649 [31] 随伟伟. 微藻生物标志物在季节性缺氧环境海水—沉积物界面降解的模拟研究[D]. 青岛: 中国海洋大学, 2013.Sui Weiwei. Simulation of microalgae biomarkers degradation in sediment-seawater interface in seasonal hypoxia environments[D]. Qingdao: Ocean University of China, 2013. [32] 张敏, 李瑞霞, 伊纪峰, 等. 4种经济海藻脂肪酸组成分析[J]. 海洋科学, 2012, 36(4): 7−12.Zhang Min, Li Ruixia, Yi Jifeng, et al. Analysis of the fatty acid composition of four economic seaweeds[J]. Marine Sciences, 2012, 36(4): 7−12. [33] 黎芯怡, 王静涵, 甄莉, 等. 浒苔多糖降解菌的筛选及其碳源利用谱分析[J]. 广西科技大学学报, 2023, 34(3): 123−131.Li Xinyi, Wang Jinghan, Zhen Li, et al. Screening of Ulva prolifera polysaccharide-degrading bacteria and analysis of its carbon source utilization spectrum[J]. Journal of Guangxi University of Science and Technology, 2023, 34(3): 123−131. [34] 随伟伟, 丁海兵, 杨桂朋, 等. 微藻脂肪酸在中国近海缺氧海水-沉积物界面中的降解模拟研究[J]. 环境科学, 2013, 34(11): 4231−4239.Sui Weiwei, Ding Haibing, Yang Guipeng, et al. Simulated study of algal fatty acid degradation in hypoxia seawater-sediment interface along China Coastal Area[J]. Environmental Science, 2013, 34(11): 4231−4239. [35] Sun Mingyi, Zou Li, Dai Jihong, et al. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters[J]. Organic Geochemistry, 2004, 35(8): 895−908. doi: 10.1016/j.orggeochem.2004.04.001 [36] 王东亮, 姜炜, 李峰. 浒苔绿潮对海洋水环境的影响分析——以2020年海阳浒苔绿潮水环境监测分析为例[J]. 鲁东大学学报(自然科学版), 2021, 37(4): 374−378, 384.Wang Dongliang, Jiang Wei, Li Feng. Influence of Enteromorpha prolifera green tide on marine water environment: taking the environmental monitoring and analysis of Enteromorpha prolifera green tide in Haiyang in 2020 as an example[J]. Journal of Ludong University (Natural Science Edition), 2021, 37(4): 374−378, 384. [37] 苑克磊, 侯查伟, 丁一, 等. 我国黄海浒苔绿潮暴发海域环境因子季节性变化及年际变化分析[J]. 广西科学院学报, 2018, 34(3): 204−209. [38] Yuan Kelei, Hou Chawei, Ding Yi, et al. Analysis of the seasonal and inter-annual changes of environmental factors in Enteromorpha prolifera green tide outbreak in the Yellow Sea[J]. Journal of Guangxi Academy of Sciences, 2018, 34(3): 204−209. (查阅网上资料, 本条文献为第38条文献的英文翻译信息, 请确认) -