留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光照先验的半监督图像增强网络在水下目标检测中的应用

徐丹 路航 史金龙 周扬

徐丹,路航,史金龙,等. 基于光照先验的半监督图像增强网络在水下目标检测中的应用[J]. 海洋学报,2025,47(x):1–13
引用本文: 徐丹,路航,史金龙,等. 基于光照先验的半监督图像增强网络在水下目标检测中的应用[J]. 海洋学报,2025,47(x):1–13
Xu Dan,Lu Hang,Shi Jinlong, et al. Application of a semi-supervised image enhancement network based on lighting priors in underwater object detection[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Xu Dan,Lu Hang,Shi Jinlong, et al. Application of a semi-supervised image enhancement network based on lighting priors in underwater object detection[J]. Haiyang Xuebao,2025, 47(x):1–13

基于光照先验的半监督图像增强网络在水下目标检测中的应用

基金项目: 国家自然科学基金项目(62203192)。
详细信息
    作者简介:

    徐丹(1981—),女,江苏省徐州市人,博士,副教授,硕士生导师,主要从事模式识别与计算机视觉方面的教学与研究工作。E-mail:xudan_zj@163.com

    通讯作者:

    徐丹(1981—),女,博士,副教授,硕士生导师,主要从事模式识别与计算机视觉方面的教学与研究工作。E-mail:xudan_zj@163.com

  • 中图分类号: TP391.41

Application of a semi-supervised image enhancement network based on lighting priors in underwater object detection

  • 摘要: 针对水下图像标注数据稀缺导致增强算法泛化性不足的问题,提出一种基于均值教师(Mean-Teacher)模型的半监督水下图像增强框架。设计融合光照和梯度先验的多尺度网络(Illumination and Gradient Prior network, IGP-Net)作为均值教师模型的主干网络。IGP-Net包括以下三个模块:多尺度照明感知模块MSLP,用来提取退化图像的多尺度特征,并融合光照和梯度先验,提升水下图像对比度;多通道细节增强模块MCE,对初步增强图像进行通道维拆分和颜色补偿,改善水下图像颜色失真现象;并行注意力模块PC,利用像素注意力和通道注意力进一步关注照明信息和颜色信息之间的关联性,实现色彩均衡。在公开数据集上的定量比较和定性分析表明,所提方法在多个关键指标上优于现有先进算法。此外,在水下目标检测任务中的实验也表明了经本文算法增强后的图像能够有效提升水下目标检测的性能。
  • 图  1  输入图像(上)和伪标签(下)实例

    Fig.  1  Illustration of input images (top) and pseudo labels (bottom)

    图  2  基于均值教师模型的半监督学习框架

    Fig.  2  Semi-supervised learning framework based on mean-teacher model

    图  3  IGP网络结构图

    Fig.  3  IGP network structure

    图  4  输入图像的光照图和梯度图

    Fig.  4  Illumination and gradient images of the input images

    图  5  本文算法与其他七种算法在UIEB测试集上的增强图像比较

    Fig.  5  Comparison of enhanced images generated by our algorithm with seven other algorithms on the UIEB test set

    图  6  本文算法与其他七种算法在EUVP测试集上的增强图像比较

    Fig.  6  Comparison of enhanced images generated by our algorithm with seven other algorithms on the EUVP test set

    图  7  消融实验可视化结果

    Fig.  7  Visualization of ablation experiments

    图  8  不同算法增强图像的SIFT关键点检测结果,图中圆圈表示检测到的SIFT特征

    Fig.  8  SIFT key points detection of the enhanced images generated by different algorithms, where circles represent the detected key points

    图  9  增强前(左)后(右)图像边缘检测结果比较

    Fig.  9  Edge detection results on images before (left) and after (right) enhancement

    图  10  增强前(左)后(右)图像显著性检测结果比较

    Fig.  10  Saliency detection results on images before (left) and after (right) enhancement

    图  11  增强前(上)后(下)图像目标检测结果比较

    Fig.  11  Object detection results on images before (upper) and after (lower) enhancement

    表  1  不同算法在标签数据集上的指标比较

    Tab.  1  Comparison of metrics for various algorithms on the labeled data sets

    MethodsUIEBUWCNN
    PSNRSSIMUCIQEUIQMPSNRSSIMUCIQEUIQM
    CLAHE
    MLLE
    UDCP
    FiveA+
    LA-Net
    UWCNN
    Semi-UIR
    Ours
    14.23
    20.78
    14.65
    23.06
    19.33
    16.49
    23.81
    24.28
    0.772
    0.721
    0.745
    0.830
    0.786
    0.765
    0.876
    0.871
    0.576
    0.588
    0.531
    0.583
    0.623
    0.544
    0.605
    0.639
    3.049
    2.625
    2.683
    3.093
    3.421
    2.761
    3.176
    3.227
    13.92
    17.82
    16.04
    16.04
    16.24
    16.14
    24.59
    26.87
    0.681
    0.795
    0.855
    0.875
    0.842
    0.881
    0.786
    0.971
    0.570
    0.579
    0.503
    0.536
    0.591
    0.546
    0.587
    0.593
    2.499
    2.497
    2.363
    2.518
    2.947
    1.940
    2.570
    3.104
      注:粗体表示最优值, 下划线表示次优值.
    下载: 导出CSV

    表  2  不同算法在无标签数据集上的指标比较

    Tab.  2  Comparison of metrics for various algorithms on unlabeled data sets

    MethodsUIQMUCIQE
    EUVPRUIEEUVPRUIE
    CLAHE
    MLLE
    UDCP
    FiveA+
    LA-Net
    UWCNN
    Semi-UIR
    Ours
    2.570
    2.349
    2.775
    3.171
    3.079
    2.622
    3.044
    3.131
    2.878
    3.042
    2.620
    3.136
    3.320
    2.466
    3.046
    3.210
    0.573
    0.575
    0.499
    0.558
    0.581
    0.523
    0.593
    0.602
    0.519
    0.576
    0.497
    0.547
    0.570
    0.520
    0.583
    0.599
      注:粗体表示最优值, 下划线表示次优值.
    下载: 导出CSV

    表  3  消融实验结果

    Tab.  3  Ablation test results

    Methods UIEB EUVP
    UCIQE UIQM UCIQE UIQM
    Baseline
    Sup-IGP
    No-Grad
    No-MCE
    No-PC
    No-PA
    No-CA
    Ours
    0.480
    0.578
    0.559
    0.572
    0.567
    0.554
    0.557
    0.595
    2.788
    3.221
    3.314
    3.367
    3.008
    3.125
    3.147
    3.383
    0.469
    0.518
    0.549
    0.551
    0.549
    0.536
    0.541
    0.581
    2.064
    2.199
    2.713
    2.826
    2.503
    2.642
    2.684
    2.973
      注:粗体表示最优值
    下载: 导出CSV

    表  4  不同算法参数量和浮点计算数比较

    Tab.  4  Comparison of various methods in terms of model parameter size and computational complexity

    Methods#Params (M) ↓FLOPs (G) ↓
    LA-Net5.15355.37
    FiveA+0.00918.74
    CCMSR-Net21.1343.6
    Ours1.6636.64
    下载: 导出CSV

    表  5  不同算法增强图像关键点检测数量对比

    Tab.  5  Comparison of the number of key points detected on enhanced images from different algorithms

    Methods关键点个数
    UIEBUWCNNEUVPRUIE
    INPUT
    CLAHE
    MLLE
    UDCP
    FiveA+
    LA-Net
    UWCNN
    Semi-UIR
    Ours
    907
    4140
    3332
    648
    3494
    829
    1373
    4152
    4275
    442
    1371
    1802
    458
    880
    325
    400
    1322
    1943
    418
    1028
    989
    493
    698
    657
    259
    1689
    2215
    71
    619
    1513
    56
    568
    507
    165
    1222
    5809
      注:粗体表示最优值,下划线表示次优值
    下载: 导出CSV

    表  6  水下目标检测性能对比

    Tab.  6  Comparison of underwater object detection performance

    ClassOriginal imagesEnhanced images
    mAP50mAP50-95mAP50mAP50-95
    Holothurian(海参)
    Echinus(海胆)
    Scallop(扇贝)
    Starfish(海星)
    0.441
    0.847
    0.559
    0.646
    0.264
    0.615
    0.368
    0.425
    0.823
    0.906
    0.849
    0.831
    0.592
    0.697
    0.576
    0.626
    下载: 导出CSV
  • [1] Sasi J P, Pandagre K N, Royappa A, et al. Deep learning techniques for autonomous navigation of underwater robots[C]//Proceedings of the 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering. Gautam Buddha Nagar: IEEE, 2023: 1630−1635.
    [2] Nalmpanti M, Chrysafi A, Meeuwig J J, et al. Monitoring marine fishes using underwater video techniques in the Mediterranean Sea[J]. Reviews in Fish Biology and Fisheries, 2023, 33(4): 1291−1310. doi: 10.1007/s11160-023-09799-y
    [3] Hu Haofeng, Zhao Lin, Li Xiaobo, et al. Underwater image recovery under the nonuniform optical field based on polarimetric imaging[J]. IEEE Photonics Journal, 2018, 10(1): 6900309.
    [4] Zhou Jingchun, Li Boshen, Zhang Dehuan, et al. UGIF-Net: an efficient fully guided information flow network for underwater image enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4206117.
    [5] Chang Shuangshuang, Gao Farong, Zhang Qizhong. Underwater image enhancement method based on improved GAN and physical model[J]. Electronics, 2023, 12(13): 2882. doi: 10.3390/electronics12132882
    [6] Pisano E D, Zong Shuquan, Hemminger B M, et al. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms[J]. Journal of Digital imaging, 1998, 11(4): 193−200. doi: 10.1007/BF03178082
    [7] Fu Xueyang, Zhuang Peixian, Huang Yue, et al. A retinex-based enhancing approach for single underwater image[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572−4576.
    [8] 付青青, 景春雷, 裴彦良, 等. 基于非锐化掩模引导滤波的水下图像细节增强算法研究[J]. 海洋学报, 2020, 42(7): 130−138.

    Fu Qingqing, Jing Chunlei, Pei Yanliang, et al. Research on underwater image detail enhancement based on unsharp mask guided filtering[J]. Haiyang Xuebao, 2020, 42(7): 130−138.
    [9] 何笑, 王刚, 贺欢. 融合引导滤波和小波变换的水下图像增强算法[J]. 计算技术与自动化, 2021, 40(1): 114−118.

    He Xiao, Wang Gang, He Huan. Underwater image enhancement algorithm combining guided filtering and wavelet transform[J]. Computing Technology and Automation, 2021, 40(1): 114−118.
    [10] Schechner Y Y, Karpel N. Clear underwater vision[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2004.
    [11] Wang Hongyuan, Hu Haofeng, Jiang Junfeng, et al. Automatic underwater polarization imaging without background region or any prior[J]. Optics Express, 2021, 29(20): 31283−31295. doi: 10.1364/OE.434398
    [12] He Kaiming, Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341−2353. doi: 10.1109/TPAMI.2010.168
    [13] Drews P L J, Nascimento E R, Botelho S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 2016, 36(2): 24−35. doi: 10.1109/MCG.2016.26
    [14] Mu Pan, Xu Hanning, Liu Zheyuan, et al. A generalized physical-knowledge-guided dynamic model for underwater image enhancement[C]//Proceedings of the 31st ACM International Conference on Multimedia. Ottawa: ACM, 2023: 7111−7120.
    [15] Poirier-Ginter Y, Lalonde J F. Robust unsupervised StyleGAN image restoration[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 22292−22301.
    [16] Sun Xin, Liu Lipeng, Li Qiong, et al. Deep pixel-to-pixel network for underwater image enhancement and restoration[J]. IET Image Processing, 2019, 13(3): 469−474. doi: 10.1049/iet-ipr.2018.5237
    [17] Wu Junjun, Liu Xilin, Lu Qinghua, et al. FW-GAN: underwater image enhancement using generative adversarial network with multi-scale fusion[J]. Signal Processing: Image Communication, 2022, 109: 116855. doi: 10.1016/j.image.2022.116855
    [18] 韩彦岭, 赵耀, 周汝雁, 等. 协同主动学习和半监督方法的海冰图像分类[J]. 海洋学报, 2020, 42(1): 123−135. doi: 10.3969/j.issn.0253-4193.2020.01.013

    Han Yanling, Zhao Yao, Zhou Ruyan, et al. Cooperative active learning and semi-supervised method for sea ice image classification[J]. Haiyang Xuebao, 2020, 42(1): 123−135. doi: 10.3969/j.issn.0253-4193.2020.01.013
    [19] Huang Shirui, Wang Keyan, Liu Huan, et al. Contrastive semi-supervised learning for underwater image restoration via reliable bank[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 18145−18155.
    [20] Gao Zhi, Yang Jing, Jiang Fengling, et al. DDformer: dimension decomposition transformer with semi-supervised learning for underwater image enhancement[J]. Knowledge-Based Systems, 2024, 297: 111977. doi: 10.1016/j.knosys.2024.111977
    [21] Qiao Nianzu, Sun Changyin, Dong Lu, et al. Semi-supervised feature distillation and unsupervised domain adversarial distillation for underwater image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7671−7682. doi: 10.1109/TCSVT.2024.3378252
    [22] Ye Renchuan, Huang Xinming, Qian Yuqiang, et al. Semi-DinatNet: two-stage underwater image enhancement with semi-supervised learning[J]. IEEE Access, 2024, 12: 151236−151250. doi: 10.1109/ACCESS.2024.3478788
    [23] Xu Sunhan, Wang Jinhua, He Ning, et al. Optimizing underwater image enhancement: integrating semi-supervised learning and multi-scale aggregated attention[J]. The Visual Computer, 2025, 41(5): 3437−3455. doi: 10.1007/s00371-024-03611-z
    [24] 张润丰, 姚伟, 石重托, 等. 融合虚拟对抗训练和均值教师模型的主导失稳模式识别半监督学习框架[J]. 中国电机工程学报, 2022, 42(20): 7497−7508.

    Zhang Runfeng, Yao Wei, Shi Zhongtuo, et al. Semi-supervised learning framework of dominant instability mode identification via fusion of virtual adversarial training and mean teacher model[J]. Proceedings of the CSEE, 2022, 42(20): 7497−7508.
    [25] Basak H, Yin Zhaozheng. Pseudo-label guided contrastive learning for semi-supervised medical image segmentation[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 19786−19797.
    [26] Peng Lintao, Zhu Chunli, Bian Liheng. U-shape transformer for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2023, 32: 3066−3079. doi: 10.1109/TIP.2023.3276332
    [27] Johnson O V, Xinying C, Khaw K W, et al. ps-CALR: periodic-shift cosine annealing learning rate for deep neural networks[J]. NIEEE Access, 2023, 11: 139171−139186.
    [28] Li Chongyi, Anwar S, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038
    [29] Islam J, Xia Youya, Sattar J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227−3234. doi: 10.1109/LRA.2020.2974710
    [30] Liu Risheng, Fan Xin, Zhu Ming, et al. Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4861−4875. doi: 10.1109/TCSVT.2019.2963772
    [31] Drews P Jr, do Nascimento E, Moraes F, et al. Transmission estimation in underwater single images[C]//Proceedings of 2023 IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 825-830.
    [32] Zhang Weidong, Zhuang Peixian, Sun Haihan, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement[J]. IEEE Transactions on Image Processing, 2022, 31: 3997−4010. doi: 10.1109/TIP.2022.3177129
    [33] Jiang Jingxia, Ye Tian, Chen Sixiang, et al. Five A+ network: you only need 9K parameters for underwater image enhancement[C]//Proceedings of the 34th British Machine Vision Conference. Aberdeen: BMVA Press, 2023.
    [34] Liu Shiben, Fan Huijie, Lin Sen, et al. Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 5326−5333. doi: 10.1109/LRA.2022.3156176
    [35] Setiadi D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2021, 80(6): 8423−8444. doi: 10.1007/s11042-020-10035-z
    [36] 杜延墨, 沈三民, 张炳玮. 基于结构相似度和鲁棒主成分分析的运动目标检测[J]. 激光杂志, 2024, 45(2): 54−57.

    Du Yanmo, Shen Sanmin, Zhang Bingwei. Moving target detection based on structural similarity and robust principal component analysis[J]. Laser Journal, 2024, 45(2): 54−57.
    [37] Panetta K, Gao Chen, Agaian S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541−551. doi: 10.1109/JOE.2015.2469915
    [38] Yang Miao, Sowmya A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062−6071. doi: 10.1109/TIP.2015.2491020
    [39] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91−110. doi: 10.1023/B:VISI.0000029664.99615.94
    [40] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679−698.
    [41] Qin Xuebin, Zhang Zichen, Huang Chenyang, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404. doi: 10.1016/j.patcog.2020.107404
    [42] Liu Chongwei, Li Haojie, Wang Shuchang, et al. A dataset and benchmark of underwater object detection for robot picking[C]//Proceedings of 2021 IEEE International Conference on Multimedia & Expo Workshops. Shenzhen: IEEE, 2021: 1−6.
    [43] Qi Hao, Zhou Huiyu, Dong Junyu, et al. Deep color-corrected multiscale retinex network for underwater image enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 4200613.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回