Preliminary study on connectivity of organism communities in artificial and natural habitats
-
摘要: 为了深入了解近岸海域不同生境间的群落格局及其相互联系,有必要探究影响人工生境和自然生境物种分布与生态连通性的潜在因素。本研究对江苏海州湾四种典型生境——人工鱼礁区(ARA)、紫菜养殖区(NCA)、牡蛎礁区(OCA)、天然海区(NA)的鱼类和无脊椎动物群落开展综合调查。结果显示,四种生境的物种丰度存在显著差异(P<0.05),其中有一些重要物种能够同时存在于多种生境,也有些特有物种仅存于一种生境内。ARA中的口虾蛄(Oratosquilla oratoria)生物量远高于其它生境,矛尾虾虎鱼体长在ARA、NCA和OCA均显著大于NA(P<0.05),这一差异与饵料生物分布密切相关。不同生活习性的鱼类体长分布差异表明,物种洄游行为在生物分布和生境连通中发挥重要作用。洄游性鱼类小黄鱼(Larimichthys polyactis)和青鳞小沙丁鱼(Sardinella zunasi)在人工生境内的体长显著大于自然生境(P<0.05)。定栖性鱼类如矛尾虾虎鱼(Chaeturichthys stigmatias)体长在OCA显著大于ARA和NCA(P<0.05),而焦氏舌鳎(Cynoglossus joyneri)体长在NCA显著大于ARA和OCA(P<0.05)。本研究表明:人工生境通过提升生境复杂性,形成有利于海洋生物资源恢复和个体发育的环境条件。饵料生物分布和物种洄游特性与不同生境间的连通性具有潜在的联系。Abstract: To better understand the community patterns and their interconnections between different habitats in coastal areas, it is essential to explore the potential factors influencing species distribution and ecological connectivity between artificial and natural habitats. This study conducted a comprehensive survey of fish and invertebrate communities across four typical habitats in Haizhou Bay, Jiangsu Province: artificial reef area (ARA), nori culture area (NCA), oyster culture area (OCA), and natural area (NA). The results showed significant differences in species abundance among the four habitats (P<0.05), with some important species occurring across multiple habitats, and some endemic species restricted to a single habitat. The biomass of Oratosquilla oratoria in ARA was significantly higher compared to other habitats, and the body length of Chaeturichthys stigmatias in ARA, NCA, and OCA was significantly greater than in NA (P<0.05), which was strongly associated with the distribution of prey organisms. Differences in body length distributions of fish with different life habits indicate that species migration behavior plays an important role in species distribution and habitat connectivity. Migratory fish species, such as Larimichthys polyactis and Sardinella zunasi, exhibited significantly greater body lengths in artificial habitats compared to natural habitats (P<0.05). Resident fish species, such as Chaeturichthys stigmatias, exhibited significantly larger body lengths in OCA compared to ARA and NCA (P<0.05), while Cynoglossus joyneri exhibited a significantly greater body length in NCA than in ARA and OCA (P<0.05). This study demonstrates that artificial habitats, by enhancing habitat complexity, provide favorable environmental conditions for the restoration of marine biological resources and the development of individuals. The distribution of prey organisms and species migration characteristics are likely associated with connectivity between different habitats.
-
Key words:
- Haizhou Bay /
- artificial reef area /
- oyster culture area /
- nori culture area /
- natural area /
- organism community
-
图 4 海州湾不同生境类型生物群落组成的非度量多维尺度(NMDS)的可视化结果。
胁强系数(0.1956<0.2)表明了排序模型的合理性。不同颜色的点代表不同的生境类型,每个点代表一个采样点
Fig. 4 Visualisation results of the non-metric multidimensional scaling (NMDS) of biotope composition of different habitat types in Hai Zhou Bay
The coefficient of coercion (0.1956<0.2) indicates the reasonableness of the ordination model. Different coloured dots represent different habitat types and each dot represents a sampling point
图 5 物种在四种生境类型中的聚类热图
显示了66个(左侧聚类)物种及其生境关联,从红色(强相关)到白色(弱相关)的颜色梯度表示物种与生境关联的强度
Fig. 5 Heat map of species clustering in four habitat types
The figure shows 66 (clustered on the left) species and their habitat associations, with a colour gradient from red (strongly associated) to white (weakly associated) indicating the strength of the species' association with the habitat
图 6 海州湾多生境关联的11种丰度较大物种的不同体长分布
方框的上限和下限分别表示第一和第三分位数,框的内线表示数据分布的平均值。(A. 赤鼻棱鳀, B. 青鳞小沙丁鱼, C. 小黄鱼, D. 皮氏叫姑鱼, E. 矛尾虾虎鱼, F. 红狼牙虾虎鱼, G. 日本蟳, H. 口虾蛄, I. 焦氏舌鳎, J. 鲜明鼓虾, K. 火枪乌贼)。注释:“*”、“**”表示存在显著差异,“***”表示存在极显著差异
Fig. 6 Distribution of different body lengths of 11 species with high abundance in multi-habitat associations in Hai Zhou Bay
The upper and lower limits of the boxes represent the first and third quartiles, respectively, and the inner line of the box represents the mean of the data distribution. (A. Thryssa kammalensis, B. Sardinella zunasi, C. Larimichthys polyactis, D. Johnius belangerii, E. Chaeturichthys stigmatias, F. Odontamblyopus rubicundus, G. Charybdis japonica, H. Oratosquilla oratoria, I. Cynoglossus joyneri, J. Alpheus distinguendus, and K. Loligo beka). Note: "*" and "**" indicate significant differences, and "***" indicates highly significant differences
表 1 生境类型及组成特点
Tab. 1 Habitat types and composition characteristics
生境类型 组成特点 紫菜养殖区 主要使用浮筏装置养殖紫菜 人工鱼礁区 由一系列人工鱼礁(如混凝土立方礁、十字形礁、塔形礁)组成的人工鱼礁区 天然海区 未受明显人为干扰的自然海域 牡蛎礁区 由活体牡蛎、死亡牡蛎的壳及其他礁区生物共同堆积组成的聚集体组成的生态修复区 表 2 四种生境中鱼类优势种和重要种的相对重要性指数
Tab. 2 Relative importance indices of dominant and important species of fish in four habitats
物种种类 拉丁名 IRI值 矛尾虾虎鱼 Chaeturichthys stigmatias 3191.24 赤鼻棱鳀 Thryssa kammalensis 2270.09 小黄鱼 Larimichthys polyactis 1216.64 斑鰶 Konosirus punctatus 889.74 焦氏舌鳎 Cynoglossus joyneri 840.05 青鳞小沙丁鱼 Sardinella zunasi 606.95 皮氏叫姑鱼 Johnius belangerii 552.97 黄鲫 Setipinna tenuifilis 487.22 红狼牙虾虎鱼 Odontamblyopus rubicundus 455.66 香斜棘䲗 Repomucenus olidus 307.18 白姑鱼 Pennahia argentata 284.60 条鲾 Equulites rivulatus 260.91 银鲳 Pampus argenteus 214.79 半滑舌鳎 Cynoglossus semilaevis 213.04 鲬 Platycephalus indicus 169.42 中华栉孔虾虎鱼 Ctenotrypauchen chinensis 165.96 表 3 四种生境的鱼类生物多样性
Tab. 3 Fish biodiversity in four habitats
站点 H'值 J值 D值 ARA-1 1.99 0.64 3.19 ARA-2 1.52 0.56 2.11 ARA-3 1.97 0.63 3.23 ARA-4 2.64 0.80 3.88 NCA-1 2.36 0.83 3.29 NCA-2 1.56 0.87 0.95 NCA-3 1.41 0.73 1.12 NCA-4 1.06 0.44 1.86 OCA-1 1.63 0.71 1.88 OCA-2 1.80 0.68 2.15 OCA-3 1.87 0.71 2.35 OCA-4 1.87 0.68 2.82 NA-1 0.69 0.29 1.51 NA-2 0.91 0.40 1.53 NA-3 1.63 0.71 1.93 NA-4 2.49 0.92 2.89 表 4 PERMANOVA 组间比较结果
Tab. 4 PERMANOVA intergroup comparison results
Df Sums of
squaresMean
squaresF.Model Variation
(R2)Pr
(>F)ARA/NCA 1 0.462 0.462 1.569 20.73% 0.095 ARA/OCA 1 0.366 0.366 1.148 14.08% 0.285 ARA/NA 1 0.523 0.523 1.495 15.74% 0.016 NCA/OCA 1 0.542 0.542 1.578 23.99% 0.108 NCA/NA 1 0.597 0.597 1.570 20.74% 0.055 OCA/NA 1 0.331 0.331 0.841 10.73% 0.718 -
[1] Reis-Filho J A, Schmid K, Harvey E S, et al. Coastal fish assemblages reflect marine habitat connectivity and ontogenetic shifts in an estuary-bay-continental shelf gradient[J]. Marine Environmental Research, 2019, 148: 57−66. doi: 10.1016/j.marenvres.2019.05.004 [2] Xu Peng, Jiao Mengyu, Li Hanying, et al. Effects of artificial reef and fishing moratorium on trophic structure of biological community in the Pearl River Estuary marine ranch based on stable isotopes[J]. Marine Environmental Research, 2023, 190: 106066. doi: 10.1016/j.marenvres.2023.106066 [3] Komyakova V, Chamberlain D, Jones G P, et al. Assessing the performance of artificial reefs as substitute habitat for temperate reef fishes: implications for reef design and placement[J]. Science of the Total Environment, 2019, 668: 139−152. doi: 10.1016/j.scitotenv.2019.02.357 [4] McLean M, Roseman E F, Pritt J J, et al. Artificial reefs and reef restoration in the Laurentian Great Lakes[J]. Journal of Great Lakes Research, 2015, 41(1): 1−8. doi: 10.1016/j.jglr.2014.11.021 [5] Richardson M A, Zhang Ya, Connolly R M, et al. Some like it hot: the ecology, ecosystem benefits and restoration potential of oyster reefs in tropical waters[J]. Frontiers in Marine Science, 2022, 9: 873768. doi: 10.3389/fmars.2022.873768 [6] Sanz-Lazaro C, Sanchez-Jerez P. Regional integrated multi-trophic aquaculture (RIMTA): spatially separated, ecologically linked[J]. Journal of Environmental Management, 2020, 271: 110921. doi: 10.1016/j.jenvman.2020.110921 [7] Gillanders B M, Able K W, Brown J A, et al. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries[J]. Marine Ecology Progress Series, 2003, 247: 281−295. doi: 10.3354/meps247281 [8] 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133−1140.Yang Hongsheng. Construction of marine ranching in China: reviews and prospects[J]. Journal of Fisheries of China, 2016, 40(7): 1133−1140. [9] Gutiérrez J L, Jones C G, Strayer D L, et al. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats[J]. Oikos, 2003, 101(1): 79−90. doi: 10.1034/j.1600-0706.2003.12322.x [10] Quan Weimin, Fan Ruiliang, Wang Yunlong, et al. Long-term oyster recruitment and growth are not influenced by substrate type in China: implications for sustainable oyster reef restoration[J]. Journal of Shellfish Research, 2017, 36(1): 79−86. doi: 10.2983/036.036.0110 [11] Vásquez J A, Zuñiga S, Tala F, et al. Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem[J]. Journal of Applied Phycology, 2014, 26(2): 1081−1088. doi: 10.1007/s10811-013-0173-6 [12] Skjermo J, Aasen I M, Arff J, et al. A new Norwegian bioeconomy based on cultivation and processing of seaweeds: opportunities and R&D needs[R]. SINTEF Fisheries and Aquaculture, 2014. (查阅网上资料, 未找到本条文献出版地, 请确认) [13] Whitmarsh D, Santos M N, Ramos J, et al. Marine habitat modification through artificial reefs off the Algarve (southern Portugal): an economic analysis of the fisheries and the prospects for management[J]. Ocean & Coastal Management, 2008, 51(6): 463−468. [14] Walker S J, Schlacher T A. Limited habitat and conservation value of a young artificial reef[J]. Biodiversity and Conservation, 2014, 23(2): 433−447. doi: 10.1007/s10531-013-0611-4 [15] Tessier A, Francour P, Charbonnel E, et al. Assessment of French artificial reefs: due to limitations of research, trends may be misleading[J]. Hydrobiologia, 2015, 753(1): 1−29. doi: 10.1007/s10750-015-2213-5 [16] Folpp H R, Schilling H T, Clark G F, et al. Artificial reefs increase fish abundance in habitat-limited estuaries[J]. Journal of Applied Ecology, 2020, 57(9): 1752−1761. doi: 10.1111/1365-2664.13666 [17] Clark S, Edwards A J. An evaluation of artificial reef structures as tools for marine habitat rehabilitation in the Maldives[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1999, 9(1): 5−21. doi: 10.1002/(SICI)1099-0755(199901/02)9:1<5::AID-AQC330>3.0.CO;2-U [18] Sherman R L, Gilliam D S, Spieler R E. Artificial reef design: void space, complexity, and attractants[J]. ICES Journal of Marine Science, 2002, 59(S1): S196−S200. [19] 张秀梅, 纪棋严, 胡成业, 等. 海洋牧场生态系统稳定性及其对干扰的响应——研究现状、问题及建议[J]. 水产学报, 2023, 47(11): 119509.Zhang Xiumei, Ji Qiyan, Hu Chengye, et al. Ecosystem stability of marine ranching and its response to disturbance: research status, issues, and suggestions[J]. Journal of Fisheries of China, 2023, 47(11): 119509. [20] Keller K, Smith J A, Lowry M B, et al. Multispecies presence and connectivity around a designed artificial reef[J]. Marine and Freshwater Research, 2017, 68(8): 1489−1500. doi: 10.1071/MF16127 [21] Reeds K A, Smith J A, Suthers I M, et al. An ecological halo surrounding a large offshore artificial reef: sediments, infauna, and fish foraging[J]. Marine Environmental Research, 2018, 141: 30−38. doi: 10.1016/j.marenvres.2018.07.011 [22] Olds A D, Connolly R M, Pitt K A, et al. Quantifying the conservation value of seascape connectivity: a global synthesis[J]. Global Ecology and Biogeography, 2016, 25(1): 3−15. doi: 10.1111/geb.12388 [23] Liao Jinbao, Bearup D, Blasius B. Food web persistence in fragmented landscapes[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1859): 20170350. doi: 10.1098/rspb.2017.0350 [24] Tang Fenghua, Shen Xinqiang, Wang Yunlong. Dynamics of fisheries resources near Haizhou Bay waters[J]. Fisheries Science, 2011, 30(6): 335−341. (查阅网上资料, 本条文献为中文文献, 请确认) [25] 罗文强, 赵刚, 张彦彦, 等. 海州湾海洋牧场人工鱼礁区建设前后海洋环境变化分析[J]. 海洋湖沼通报, 2021(1): 33−40.Luo Wenqiang, Zhao Gang, Zhang Yanyan, et al. A comparative analysis on marine environments of an artificial reef area in marine pasture, Haizhou Bay, before and after construction[J]. Transactions of Oceanology and Limnology, 2021(1): 33−40. [26] Luo Feng, Li Ruijie. 3D water environment simulation for north Jiangsu offshore sea based on EFDC[J]. Journal of Water Resource and Protection, 2009, 1(1): 41−47. doi: 10.4236/jwarp.2009.11007 [27] Xie Fei, Pang Yong, Song Zhiyao. Three-dimensional numerical simulation of tidal current in offshore area of Haizhou Bay[J]. Journal of Hohai University (Natural Sciences), 2007, 35(6): 718−721. (查阅网上资料, 本条文献为中文文献, 请确认) [28] 章守宇, 张焕君, 焦俊鹏, 等. 海州湾人工鱼礁海域生态环境的变化[J]. 水产学报, 2006, 30(4): 475−480.Zhang Shouyu, Zhang Huanjun, Jiao Junpeng, et al. Change of ecological environment of artificial reef waters in Haizhou Bay[J]. Journal of Fisheries of China, 2006, 30(4): 475−480. [29] Zhang Xiuying, Zhong Taiyang, Huang Xianjin, et al. Values of marine ecosystem services in Haizhou Bay[J]. Acta Ecologica Sinica, 2013, 33(2): 640−649. (查阅网上资料, 本条文献为中文文献, 请确认) [30] 吴立珍, 吴卫强, 陆伟, 等. 海州湾生态环境修复的探索实践与展望——江苏省海洋牧场示范区建设[J]. 中国水产, 2012(6): 35−37.Wu Lizhen, Wu Weiqiang, Lu Wei, et al. Exploration, practice, and prospects of ecological environment restoration in Haizhou Bay: construction of the marine ranching demonstration zone in Jiangsu Province[J]. China Fisheries, 2012(6): 35−37. (查阅网上资料, 未找到本条文献英文翻译, 请确认) [31] 高宇航, 陈曦, 孟顺龙, 等. 人工鱼礁建设研究进展及其作用机理[J]. 中国农学通报, 2023, 39(23): 138−144. doi: 10.11924/j.issn.1000-6850.casb2023-0246Gao Yuhang, Chen Xi, Meng Shunlong, et al. Research progress of artificial reef construction and its mechanism[J]. Chinese Agricultural Science Bulletin, 2023, 39(23): 138−144. doi: 10.11924/j.issn.1000-6850.casb2023-0246 [32] 闫令东. 筏式养殖夹苗密度对海带生长的影响——以荣成爱莲湾海带养殖为例[D]. 烟台: 烟台大学, 2021.Yan Lingdong. Effects of clamping density on the growth of Saccharina japonica in raft culture: a case study in Ailian Bay[D]. Yantai: Yantai University, 2021. [33] 杨心愿. 祥云湾海洋牧场人工牡蛎礁群落特征及其生态效应[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.Yang Xinyuan. The community characteristics and ecological functions of artificial oyster reef at Xiangyun Bay marine ranching[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2019. [34] Pinkas L, Oliphant M S, Iverson I L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Fishery Bulletin, 1971, 152: 1−105. [35] 余宏昌, 毕宝帅, 唐文乔, 等. 上海苏州河治理中鱼类多样性及群落结构变化[J]. 生物多样性, 2021, 29(1): 32−42. doi: 10.17520/biods.2020067Yu Hongchang, Bi Baoshuai, Tang Wenqiao, et al. Changes in fish diversity and assemblage during comprehensive restoration of the Suzhou River in Shanghai[J]. Biodiversity Science, 2021, 29(1): 32−42. doi: 10.17520/biods.2020067 [36] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379−423. doi: 10.1002/j.1538-7305.1948.tb01338.x [37] Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969. [38] Margalef R. Information theory in ecology[J]. General Systems, 1958, 3: 36−71. [39] 黄欣. 南流江河口红树林潮沟鱼类群落时空分布格局及其与环境因子的关系[D]. 桂林: 桂林理工大学, 2020.Huang Xin. Temporal and spatial distribution patterns of fish assemblages from mangrove creek in the Nanliujiang River Estuary and its relationship with environmental factors[D]. Guilin: Guilin University of Technology, 2020. [40] Clarke K R, Gorley R N. Getting Started with PRIMER v7[M]. PRIMER-E Ltd: Plymouth, Plymouth Marine Laboratory, 2015. (查阅网上资料, 不确定本条文献出版信息, 请确认) [41] Heck Jr K L, Hays G, Orth R J. Critical evaluation of the nursery role hypothesis for Seagrass meadows[J]. Marine Ecology Progress Series, 2003, 253: 123−136. doi: 10.3354/meps253123 [42] Unsworth R K F, Garrard S L, De León P S, et al. Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum[J]. Aquatic Biology, 2009, 5(1): 85−95. [43] Berkström C, Lindborg R, Thyresson M, et al. Assessing connectivity in a tropical embayment: fish migrations and seascape ecology[J]. Biological Conservation, 2013, 166: 43−53. doi: 10.1016/j.biocon.2013.06.013 [44] Pihl L, Wennhage H. Structure and diversity of fish assemblages on rocky and soft bottom shores on the Swedish west coast[J]. Journal of Fish Biology, 2002, 61(sA): 148−166. doi: 10.1111/j.1095-8649.2002.tb01768.x [45] Fu Xiaoming, Tang Jianye, Wu Weiqiang, et al. Evaluation of ecological restoration performance in Haizhou Bay, Lianyungang[J]. Journal of Dalian Ocean University, 2017, 32(1): 93−98. (查阅网上资料, 本条文献为中文文献, 请确认) [46] 张泽华. 浅海筏式海带养殖活动对水动力及沉积环境影响研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2016.Zhang Zehua. Effects of suspended kelp Laminaria japonica cultivation on hydrodynamic conditions and sedimentary environments[D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2016. [47] 侯润. 祥云湾海洋牧场牡蛎礁构建效果评估[D]. 保定: 河北农业大学, 2022.Hou Run. Effect evaluation of oyster reef construction in Xiangyun Bay Marine ranching[D]. Baoding: Hebei Agricultural University, 2022. [48] 董双林, 董云伟, 黄六一, 等. 迈向远海的中国水产养殖: 机遇、挑战和发展策略[J]. 水产学报, 2023, 47(3): 1−11.Dong Shuanglin, Dong Yunwei, Huang Liuyi, et al. Toward offshore aquaculture in China: opportunities, challenges and development strategies[J]. Journal of Fisheries of China, 2023, 47(3): 1−11. [49] Abecasis D, Bentes L, Lino P G, et al. Residency, movements and habitat use of adult white seabream (Diplodus sargus) between natural and artificial reefs[J]. Estuarine, Coastal and Shelf Science, 2013, 118: 80−85. doi: 10.1016/j.ecss.2012.12.014 [50] Bohnsack J A. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference?[J]. Bulletin of Marine Science, 1989, 44(2): 631−645. [51] 汪振华, 章守宇, 王凯, 等. 三横山人工鱼礁区鱼类和大型无脊椎动物诱集效果初探[J]. 水产学报, 2010, 34(5): 751−759. doi: 10.3724/SP.J.1231.2010.06712Wang Zhenhua, Zhang Shouyu, Wang Kai, et al. A preliminary study on fish and macroinvertebrate enhancement in artificial reef area around Sanheng Isle, Shengsi, China[J]. Journal of Fisheries of China, 2010, 34(5): 751−759. doi: 10.3724/SP.J.1231.2010.06712 [52] 张荣良. 烟台近岸人工鱼礁与自然岩礁食物网结构与功能对比研究[D]. 中国科学院大学(中国科学院烟台海岸带研究所), 2021.Zhang Rongliang. The comparative study of the food web structure and function between the artificial and natural reefs in the nearshore of Yantai[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2021. [53] Ammar M S A. Coral reef restoration and artificial reef management, future and economic[J]. The Open Environmental Engineering Journal, 2009, 2(1): 37−49. doi: 10.2174/1874829500902010037 [54] Lowry M B, Glasby T M, Boys C A, et al. Response of fish communities to the deployment of estuarine artificial reefs for fisheries enhancement[J]. Fisheries Management and Ecology, 2014, 21(1): 42−56. doi: 10.1111/fme.12048 [55] 徐俊伟, 张波, 张崇良, 等. 基于线性混合模型研究海州湾六丝钝尾虾虎鱼摄食生态[J]. 应用生态学报, 2022, 33(9): 2563−2571.Xu Junwei, Zhang Bo, Zhang Chongliang, et al. Feeding ecology of Amblychaeturichthys hexanema in Haizhou Bay based on linear mixed model[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2563−2571. [56] 秦玉雪, 陈雷, 尹增强, 等. 基于碳、氮稳定同位素的黄海北部口虾蛄食性分析[J]. 水产学杂志, 2023, 36(1): 59−64. doi: 10.3969/j.issn.1005-3832.2023.01.009Qin Yuxue, Chen Lei, Yin Zengqiang, et al. Feeding habits of mantis shrimp Oratosqilla oratoria in northern Yellow Sea based on carbon and nitrogen stable isotope analysis[J]. Chinese Journal of Fisheries, 2023, 36(1): 59−64. doi: 10.3969/j.issn.1005-3832.2023.01.009 [57] 许莉莉, 薛莹, 焦燕, 等. 海州湾及邻近海域口虾蛄群体结构及资源分布特征[J]. 中国海洋大学学报, 2017, 47(4): 28−36.Xu Lili, Xue Ying, Jiao Yan, et al. Population structure and spatial distribution of Oratosquilla oratoria in Haizhou Bay and adjacent waters[J]. Periodical of Ocean University of China, 2017, 47(4): 28−36. [58] Baeck G W, Park J M, Hashimoto H. Feeding ecology of three tonguefishes, genus Cynoglossus (Cynoglossidae) in the Seto Inland Sea, Japan[J]. Animal Cells and Systems, 2011, 15(4): 325−336. doi: 10.1080/19768354.2011.611173 [59] 王斌, 孙鹏, 叶振江, 等. 山东近海枪乌贼类资源丰度的时空变动及其与环境因子的关系[J]. 中国海洋大学学报, 2020, 50(6): 50−60.Wang Bin, Sun Peng, Ye Zhenjiang, et al. Spatial-temporal variations of Loligo squids abundances in Shandong coastal waters and associating environmental factors[J]. Periodical of Ocean University of China, 2020, 50(6): 50−60. [60] 林龙山, 程家骅, 姜亚洲, 等. 黄海南部和东海小黄鱼(Larimichthys polyactis)产卵场分布及其环境特征[J]. 生态学报, 2008, 28(8): 3485−3494. doi: 10.3321/j.issn:1000-0933.2008.08.001Lin Longshan, Cheng Jiahua, Jiang Yazhou, et al. Spatial distribution and environmental characteristics of the spawning grounds of small yellow croaker in the southern Yellow Sea and the East China Sea[J]. Acta Ecologica Sinica, 2008, 28(8): 3485−3494. doi: 10.3321/j.issn:1000-0933.2008.08.001 [61] 杨天燕. 青鳞小沙丁鱼(Sardinella zunasi)种群形态学和遗传学研究[D]. 青岛: 中国海洋大学, 2008.Yang Tianyan. Study on morphological and genetic comparison of Sardinella zunasi populations[D]. Qingdao: Ocean University of China, 2008. [62] Liu Xiao, Zhang Chongliang, Ren Yiping, et al. Spatiotemporal variation in the distribution and abundance of Chaeturichthys stigmatias in the Yellow River estuary and adjacent waters[J]. Journal of Fishery Sciences of China, 2015, 22(4): 791−798. (查阅网上资料, 本条文献为中文, 请确认) [63] Minami T. The early life history of a tongue fish, Cynoglossus joyneri[J]. Nippon Suisan Gakkaishi, 1983, 49(5): 719−724. doi: 10.2331/suisan.49.719 [64] 张云雷, 薛莹, 于华明, 等. 海州湾春季皮氏叫姑鱼栖息地适宜性研究[J]. 海洋学报, 2018, 40(6): 83−91. doi: 10.3969/j.issn.0253-4193.2018.06.008Zhang Yunlei, Xue Ying, Yu Huaming, et al. Study on the habitat suitability of Johnius belangerii during spring in the Haizhou Bay, China[J]. Haiyang Xuebao, 2018, 40(6): 83−91. doi: 10.3969/j.issn.0253-4193.2018.06.008 [65] Shervette V R, Gelwick F. Habitat-specific growth in juvenile pinfish[J]. Transactions of the American Fisheries Society, 2007, 136(2): 445−451. doi: 10.1577/T06-097.1 [66] Arve J. Preliminary report on attracting fish by oyster-shell plantings in Chincoteague Bay, Maryland[J]. Chesapeake Science, 1960, 1(1): 58−65. doi: 10.2307/1350537 [67] Maciel T R, Avigliano E, De Carvalho B M, et al. Population structure and habitat connectivity of Genidens genidens (Siluriformes) in tropical and subtropical coasts from Southwestern Atlantic[J]. Estuarine, Coastal and Shelf Science, 2020, 242: 106839. doi: 10.1016/j.ecss.2020.106839 [68] Yamanaka H, Minamoto T. The use of environmental DNA of fishes as an efficient method of determining habitat connectivity[J]. Ecological Indicators, 2016, 62: 147−153. doi: 10.1016/j.ecolind.2015.11.022 -