The impact of rare and common species loss on community functional diversity in fish community of Zhoushan fishing ground
-
摘要: 本研究基于舟山渔场鱼类群落调查数据,采用自抽样技术模拟稀有种和常见种种类数随机丧失,并通过生物量比例递减法模拟生物量丧失情景,以探究不同生态类群丧失对鱼类群落功能多样性的影响机制。研究结果表明,稀有种虽仅占群落总生物量的3%,但其种类数占比接近40%,在群落结构组成中具有重要地位。物种丧失情景模拟显示,稀有种种类数丧失直接影响功能多样性指数,具体表现为功能丰富度下降、功能均匀度上升,而功能离散度和二次熵指数变化不明显;常见种种类数丧失导致功能丰富度下降,其余三个功能多样性指数则保持相对稳定。在生物量丧失情景下,随着稀有种生物量减少功能丰富度保持不变而功能均匀度、功能离散度和二次熵指数均呈现下降趋势,其中功能均匀度表现为先缓后急的非线性下降,其余两个指数则呈现线性递减规律;常见种生物量丧失则引起后三个指数下降呈现先急后缓的特征。稀有种在群落中占据着独特的生态功能位,其功能性状分布于多维功能空间边缘,对维持群落功能多样性具有独特的作用。加强稀有种及其栖息地的保护是维持区域生态系统多样性和稳定性的关键策略。Abstract: This study is based on survey data of fish communities in the Zhoushan fishing ground and uses a resampling technique to simulate the random loss of rare and common species. It also employs a biomass proportion reduction method to simulate scenarios of biomass loss, in order to explore the mechanisms by which the loss of different ecological groups affects functional diversity in fish communities. The results show that although rare species account for only 3% of the total community biomass, their species richness constitutes nearly 40% of the community, indicating an important ecological niche within the community structure. The simulation of species loss scenarios revealed that the loss of rare species’ richness directly impacts the functional diversity indices, specifically leading to a decrease in functional richness and an increase in functional evenness, while functional divergence and Rao’s quadratic entropy indices showed no significant changes. In contrast, the loss of common species’ richness resulted in a decline in functional richness, while the other three functional diversity indices remained relatively stable. Under the biomass loss scenarios, the reduction in rare species’ biomass led to unchanged functional richness but declines in functional evenness, functional divergence, and Rao’s quadratic entropy indices. The functional evenness index exhibited a nonlinear decline that started slowly and then accelerated, while the other two indices showed linear decreasing patterns. In contrast, the loss of common species’ biomass caused the latter three indices to decline in a pattern that started rapidly and then slowed down. Rare species occupy unique functional niches in the community, with their functional traits distributed at the edges of the multidimensional functional space. They play a unique role in maintaining community functional diversity. Strengthening the protection of rare species and their habitats is a key strategy for maintaining regional ecosystem diversity and stability.
-
Key words:
- fish community /
- rare species /
- functional diversity /
- simulated loss
-
表 1 功能性状分类标准及其所含类型
Tab. 1 Overview of functional traits included in the analyses
功能类别Classification of function 功能性状
Functional trait包含类型 Type of functional traits 运动Locomotion 体型
Body shape短宽 short and or deep、细长 elongated、鳗形 eel like、纺锤形 fusiform normal、椭圆纺锤形 fusiform normal oval、椭圆形 elongated circular、受压纺锤形 fusiform normal compressed、椭圆鳗形 eel like oval、其他平扁形 other flattened、受压短宽形 short and or deep compressed、受压鳗形 eel like compressed、棱角纺锤形 fusiform normal angular、平扁形 flattened、圆鳗形 eel like circular、其他 other 食物消耗量与生物
量的比值 Q/B连续变量,范围:0.0−161.6 营养级 Trophic level 连续变量,范围:3.0−4.46 最大栖息深度 Depth Max 连续变量,范围:5− 4000 在水层中的垂向位置
Position Water Column底栖 demersal、近底栖 bathydemersal、底层兼上层 benthopelagic、深海 bathydemersal、浅海兼上层 pelagic_neritic、珊瑚礁依赖 reef_associated 运动方式
Swim Mode亚鲹形游动 subcarangiform、鲀形游动 tetraodontiform、鳗形游动 anguilliform、鲈形游动 labriform、二齿鲀形游动 diodontiform、鲹形游动 carangiform、鳐形游动 rajiform、弓鳍鱼形游动 amiiform、扳机鱼形游动 balistiform、箱鲀形游动 ostraciiform 生态适应性Ecological adaptation 最大体长 Lm 连续变量,范围:0.9−98.8 平均适宜温度
Temperature Prefer Mean连续变量,范围:4.4−29.0 繁殖行为Reproduction 繁殖习性
Guild Combined不进行亲代抚育 nonguarders、在开放水域散布卵且不进行亲代抚育 nonguarders open water substratum egg scatterers、进行亲代抚育 guarders、体外携带并保护孵化 bearers external brooders、筑巢抚育 guarders nesters、体内孵化受精卵 bearers、体内受精孵化并产出活体幼鱼 bearers internal live bearers、仔细照料的亲代抚育 guarders clutch tenders 种群动态Population dynamics 生长系数 K 连续变量,范围:0.1−2.34 世代周期 Generation time 连续变量,范围: 0.52664 −9.7658 表 2 鱼类群落稀有种及常见种的代表物种
Tab. 2 Representative species of rare and common species of fish community
稀有种 Rare species
共计53种(39.85%)rr值均值(判定界点)
Mean rr value(decision boundary)常见种 Common species
共计80种(60.15%)代表种
Symbol species红鲬 Bembras japonica 0.3462 绿鳍鱼 Chelidonichthys kumu 须鳗鰕虎鱼 Taenioides anguillaris 虻鲉 Erisphex pottii 棘冠海龙 Corythoichthys haematopterus 细条天竺鱼 Jaydia lineata 高体若鲹 Carangoides equula 发光鲷 Acropoma japonicum 中颌棱鳀 Thryssa mystax 小黄鱼 Larimichthys polyactis 青鰧 Xenocephalus elongatus 海鳗 Muraenesox cinereus 五点斑鲆 Pseudorhombus quinquocellatus 褐斑三线舌鳎 Cynoglossus trigrammus 舒氏海龙 Syngnathus schlegeli 短吻舌鳎 Cynoglossus abbreviatus 鲈 Lateolabrax japonicus 六丝矛尾鰕虎鱼 Amblychaeturichthys hexanema 日本鰧 Uranoscopus japonicus 龙头鱼 Harpadon nehereus 累计生物量
Cumulative biomass32.76 kg(3.00%) 1090.47 kg(97.00%) -
[1] Ferrier S, Manion G, Elith J, et al. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment[J]. Diversity and Distributions, 2007, 13(3): 252−264. doi: 10.1111/j.1472-4642.2007.00341.x [2] Rabinowitz D. Seven forms of rarity[M]//Synge, H. The Biological Aspects of Rare Plants Conservation. New York: Wiley, 1981, 205−217. [3] Nikolaus Probst W, Lynam C P, Bluemel J K, et al. Assessing change in the occurrence of rare species using the binomial distribution[J]. Ecological Indicators, 2023, 156: 111084. doi: 10.1016/j.ecolind.2023.111084 [4] Chapman A S A, Tunnicliffe V, Bates A E. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities[J]. Diversity and Distributions, 2018, 24(5): 568−578. doi: 10.1111/ddi.12712 [5] 刘旻霞, 李全弟, 蒋晓轩, 等. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107−116. doi: 10.17520/biods.2019297Liu Minxia, Li Quandi, Jiang Xiaoxuan, et al. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow[J]. Biodiversity Science, 2020, 28(2): 107−116. doi: 10.17520/biods.2019297 [6] 郭馨, 林晓晴, 郑欣怡, 等. 中国亚热带-热带3个海区微型鞭毛虫群落优势种和稀有种的分布特征和建群机制[J]. 应用海洋学学报, 2022, 41(3): 356−374.Guo Xin, Lin Xiaoqing, Zheng Xinyi, et al. Distribution patterns and assembly mechanisms of dominant and rare species of microbial flagellate communities in the subtropic-tropic marine areas in China[J]. Journal of Applied Oceanography, 2022, 41(3): 356−374. [7] 周钟楠, 童安楠, 吴亚妮, 等. 稀有种丧失对鱼类群落物种多样性和功能多样性的影响[J]. 生态学报, 2025, 45(1): 252−264.Zhou Zhongnan, Tong Annan, Wu Yani, et al. The impact of rare species loss on species diversity and functional diversity of fish communities[J]. Acta Ecologica Sinica, 2025, 45(1): 252−264. [8] Leitão R P, Zuanon J, Mouillot D, et al. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams[J]. Ecography, 2018, 41(1): 219−232. doi: 10.1111/ecog.02845 [9] Malaterre C, Dussault A C, Rousseau-Mermans S, et al. Functional diversity: an epistemic roadmap[J]. BioScience, 2019, 69(10): 800−811. doi: 10.1093/biosci/biz089 [10] 俞存根, 陈全震, 陈小庆, 等. 舟山渔场及邻近海域鱼类种类组成和数量分布[J]. 海洋与湖沼, 2010, 41(3): 410−417. doi: 10.11693/hyhz201003018018Yu Cungen, Chen Quanzhen, Chen Xiaoqing, et al. Species composition and quantitative distribution of fish in the Zhoushan fishing ground and its adjacent waters[J]. Oceanologia et Limnologia Sinica, 2010, 41(3): 410−417. doi: 10.11693/hyhz201003018018 [11] 俞存根, 虞聪达, 章飞军, 等. 浙江南部外海鱼类种类组成和数量分布[J]. 海洋与湖沼, 2009, 40(3): 353−360. doi: 10.3321/j.issn:0029-814X.2009.03.016Yu Cungen, Yu Congda, Zhang Feijun, et al. Fish species and quantity off southern Zhejiang, East Chines Sea[J]. Oceanologia et Limnologia Sinica, 2009, 40(3): 353−360. doi: 10.3321/j.issn:0029-814X.2009.03.016 [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T12763.6-2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2007.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 12763.6-2007, Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2007. [13] 中华人民共和国农业部. SC/T 9403-2012, 海洋渔业资源调查规范[S]. 北京: 中国农业出版社, 2012.Ministry of Agriculture of the People's Republic of China. SC/T 9403-2012, Technical specification for marine fishery resources survey[S]. Beijing: China Agriculture Press, 2012. [14] Li Yuru, Wang Jing, Ju Peilong, et al. Different responses of taxonomic and functional diversity to environmental changes: case study of fish communities in the Zhoushan fishing ground, China[J]. Aquatic Sciences, 2023, 85(4): 117. doi: 10.1007/s00027-023-01012-3 [15] Maciel E A. An index for assessing the rare species of a community[J]. Ecological Indicators, 2021, 124: 107424. doi: 10.1016/j.ecolind.2021.107424 [16] Magneville C, Loiseau N, Albouy C, et al. mFD: an R package to compute and illustrate the multiple facets of functional diversity[J]. Ecography, 2022, 45(1): e05904. [17] Liu Xueqin, Wang Hongzhu. Effects of loss of lateral hydrological connectivity on fish functional diversity[J]. Conservation Biology, 2018, 32(6): 1336−1345. doi: 10.1111/cobi.13142 [18] 邹建宇, 刘淑德, 张崇良, 等. 长山列岛邻近海域鱼类群落功能多样性的季节和空间变化[J]. 海洋学报, 2023, 45(1): 13−24.Zou Jianyu, Liu Shude, Zhang Chongliang, et al. Seasonal and spatial changes in functional diversity of fish communities in the adjacent waters of the Changshan Islands[J]. Haiyang Xuebao, 2023, 45(1): 13−24. [19] 求锦津, 王咏雪, 李铁军, 等. 舟山长白海域主要游泳动物生态位及其分化研究[J]. 生态学报, 2018, 38(18): 6759−6767.Qiu Jinjin, Wang Yongxue, Li Tiejun, et al. Study on the niche and differentiation of major nekton species in the Zhoushan Changbai sea area[J]. Acta Ecologica Sinica, 2018, 38(18): 6759−6767. [20] Mason N W H, Mouillot D, Lee W G, et al. Functional richness, functional evenness and functional divergence: the primary components of functional diversity[J]. Oikos, 2005, 111(1): 112−118. doi: 10.1111/j.0030-1299.2005.13886.x [21] Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8): 2290−2301. doi: 10.1890/07-1206.1 [22] Teichert N, Lepage M, Sagouis A, et al. Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems[J]. Scientific Reports, 2017, 7(1): 17611. doi: 10.1038/s41598-017-17975-x [23] Mouillot D, Bellwood D R, Baraloto C, et al. Rare species support vulnerable functions in high-diversity ecosystems[J]. PLoS Biology, 2013, 11(5): e1001569. doi: 10.1371/journal.pbio.1001569 [24] Aune M, Aschan M M, Greenacre M, et al. Functional roles and redundancy of demersal Barents Sea fish: Ecological implications of environmental change[J]. PLoS One, 2018, 13(11): e0207451. doi: 10.1371/journal.pone.0207451 [25] Chapman A S A, Tunnicliffe V, Bates A E. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities[J]. Diversity and Distributions, 2018, 24(5): 568−578. (查阅网上资料, 本条文献与第四条文献重复, 请确认) [26] 帅方敏, 李新辉, 陈方灿, 等. 淡水鱼类功能多样性及其研究方法[J]. 生态学报, 2017, 37(15): 5228−5237.Shuai Fangmin, Li Xinhui, Chen Fangcan, et al. Functional diversity of freshwater fishes and methods of measurement[J]. Acta Ecologica Sinica, 2017, 37(15): 5228−5237. [27] Da Silva V E L, Fabré N N. Rare species enhance niche differentiation among tropical estuarine fish species[J]. Estuaries and Coasts, 2019, 42(3): 890−899. doi: 10.1007/s12237-019-00524-2 -