留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风“烟花”作用下盐沼植被斑块对潮滩冲淤影响研究

韩硕 董大正 史本伟 张新淼 薛力铭 李秀珍 刘有才

韩硕,董大正,史本伟,等. 台风“烟花”作用下盐沼植被斑块对潮滩冲淤影响研究[J]. 海洋学报,2025,47(x):1–12
引用本文: 韩硕,董大正,史本伟,等. 台风“烟花”作用下盐沼植被斑块对潮滩冲淤影响研究[J]. 海洋学报,2025,47(x):1–12
Han Shuo,Dong Dazheng,Shi Benwei, et al. Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon 'Yanhua'[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Han Shuo,Dong Dazheng,Shi Benwei, et al. Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon "Yanhua"[J]. Haiyang Xuebao,2025, 47(x):1–12

台风“烟花”作用下盐沼植被斑块对潮滩冲淤影响研究

基金项目: 国家自然科学基金(42076170, 42176164);上海市“国际科技合作伙伴计划”(23590780200);河北省中央引导地方科技专项项目(236Z3303G)。
详细信息
    作者简介:

    韩硕(2000—),女,辽宁省朝阳市人,研究方向为河口海岸动力沉积与植被作用过程。E-mail:51253904006@stu.ecnu.edu.cn

    通讯作者:

    史本伟(1979—),男,上海人,研究员,主要研究沉积动力地貌过程及其与生态系统的相互作用。E-mail: bwshi@sklec.ecnu.edu.cn

Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon "Yanhua"

  • 摘要: 台风作为海岸带常见的自然灾害之一,对潮滩造成严重影响。然而,台风现场资料十分匮乏,针对台风期间盐沼植被是如何保护潮滩的研究仍非常有限。本文选取长江口崇明东滩为研究对象,在2021年7月台风“烟花”过境期间,借助水动力仪器、无人机摄影测量技术(高程测量),分别对盐沼和盐沼前缘区域进行水动力观测及台风前、后盐沼植被生态系统监测。研究发现:(1)台风期间风速、水深、波高为台风前、后的1.1-2.8倍,且盐沼植被前缘盐沼前缘区域的水动力均高于盐沼区域,水深、波高和流速分别是盐沼区的1.3倍、1.2倍和1.9倍;(2)台风“烟花”影响下,盐沼前缘植被斑块由于直接面对台风带来的强风和强浪,水深、波高等水动力强度是盐沼区域的1.1-1.9倍,导致在相同植被盖度情况下盐沼前缘植被斑块处的侵蚀占比是靠陆植被斑块的1.2-1.8倍;(3)在盐沼前缘,密集斑块区相对于稀疏斑块区的促淤能力更强,其中密集斑块区域最大淤积厚度可达45 cm,而稀疏斑块区则主要以侵蚀为主,最大侵蚀深度可达17 cm。表明植被斑块的密集程度直接影响滩面冲淤变化。本研究揭示了在极端天气事件影响下,植被斑块的排列方式和所处位置对潮滩冲淤的影响至关重要,这对潮滩管理和生态保护具有重要意义,同时也为应对极端天气如何建立坚实的自然屏障提供理论支持。
  • 图  1  研究区位置和台风路径(a)、崇明东滩示意图(红色矩形中)(b)、水动力泥沙观测点1、2号点(c)

    Fig.  1  Location of the study area and typhoon paths (a), schematic diagram of Chongming East Tide Flat (within the red rectangle) (b), hydrodynamic and sediment observation points 1 and 2 (c).

    图  3  2021年台风“烟花”前、中、后崇明东滩水动力、悬沙浓度变化图,黄色部分表示台风中

    (a) 风速矢量图、(b)水深、(c)有效波高、(d)1号点(盐沼区观测点)流速矢量图、(e)2号点(盐沼前缘区观测点)流速矢量图

    Fig.  3  Hydrodynamics and suspended sediment concentration in Chongming East Tide Flat before, during, and after Typhoon "In-Fa" in 2021, with the yellow area indicating the typhoon period.

    (a) Wind speed vector map, (b) Water depth, (c) Significant wave height, (d) Flow speed vector map at Point 1 (salt marsh observation point), (e) Flow speed vector map at Point 2 (salt marsh edge observation point).

    图  4  台风“烟花”前研究区植被覆盖图(a)、台风“烟花”前后滩面冲淤图(b):正值表示淤积,负值表示侵蚀、剖面线位置图(c):底图为图(a)与图(b)叠合图

    Fig.  4  Vegetation cover map of the study area before Typhoon "In-Fa"(a) , Sedimentation and erosion map of the tidal flat before and after Typhoon "In-Fa"(b): positive values indicate deposition and negative values indicate erosion, Profile line location map(c): the base map is a composite of (a) and (b).

    图  2  RTK测量高程点与无人机反演高程点的拟合,R2为相关系数

    Fig.  2  Fitting of RTK-measured elevation points and UAV-derived elevation points, with R2 as the correlation coefficient.

    图  5  滩面剖面线上各部分占比

    Fig.  5  Proportions of different sections along the tidal flat profile line

    表  1  仪器选择与参数设置

    Tab.  1  Instrument selection and parameter settings

    仪器名称测量物理参数仪器位置距底床高度(m)时间间隔(min)频率(Hz)Burst(s)
    ADV流速1、2号点0.25516256
    RBR-Wave水深、波高1、2号点0.154256
    下载: 导出CSV
  • [1] Gu Jiali, Luo Min, Zhang Xiujuan, et al. Losses of salt marsh in China: trends, threats and management[J]. Estuarine, Coastal and Shelf Science, 2018, 214: 98−109. doi: 10.1016/j.ecss.2018.09.015
    [2] Shepard C C, Crain C M, Beck M W. The protective role of coastal marshes: a systematic review and meta-analysis[J]. PloS One, 2011, 6(11): e27374. doi: 10.1371/journal.pone.0027374
    [3] Mury A, Collin A, Houet T, et al. Using multispectral drone imagery for spatially explicit modeling of wave attenuation through a salt marsh meadow[J]. Drones, 2020, 4(2): 25. doi: 10.3390/drones4020025
    [4] Drake K, Halifax H, Adamowicz S C, et al. Carbon sequestration in tidal salt marshes of the Northeast United States[J]. Environmental Management, 2015, 56(4): 998−1008. doi: 10.1007/s00267-015-0568-z
    [5] Sheehan L, Sherwood E T, Moyer R P, et al. Blue carbon: an additional driver for restoring and preserving ecological services of coastal wetlands in Tampa Bay (Florida, USA)[J]. Wetlands, 2019, 39(6): 1317−1328. doi: 10.1007/s13157-019-01137-y
    [6] Wang Xuming, Wang Weiqi, Tong Chuan. A review on impact of typhoons and hurricanes on coastal wetland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(1): 23−29. doi: 10.1016/j.chnaes.2015.12.006
    [7] Chen H, Lu W, Yan G, et al. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China[J]. Biogeosciences, 2014, 11(19): 5323−5333. doi: 10.5194/bg-11-5323-2014
    [8] Babcock R C, Bustamante R H, Fulton E A, et al. Corrigendum: severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast[J]. Frontiers in Marine Science, 2019, 6: 558. doi: 10.3389/fmars.2019.00558
    [9] Roman C T, Niering W A, Warren R S. Salt marsh vegetation change in response to tidal restriction[J]. Environmental Management, 1984, 8(2): 141−149. doi: 10.1007/BF01866935
    [10] 张金池, 臧廷亮, 曾锋. 岩质海岸防护林树木根系对土壤抗冲性的强化效应[J]. 南京林业大学学报, 2001, 25(1): 9−12.

    Zhang Jinchi, Zang Tingliang, Zeng Feng. A study on soil anti-scourability intensification of protective forest root system in bedrock coast[J]. Journal of Nanjing Forestry University, 2001, 25(1): 9−12.
    [11] Marin‐Diaz B, Govers L L, van der Wal D, et al. The importance of marshes providing soil stabilization to resist fast‐flow erosion in case of a dike breach[J]. Ecological Applications, 2022, 32(6): e2622. doi: 10.1002/eap.2622
    [12] Ford H, Garbutt A, Ladd C, et al. Soil stabilization linked to plant diversity and environmental context in coastal wetlands[J]. Journal of Vegetation Science, 2016, 27(2): 259−268. doi: 10.1111/jvs.12367
    [13] 李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583−591.

    Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands[J]. Advances in Earth Science, 2007, 22(6): 583−591.
    [14] Rupprecht F, Möller I, Paul M, et al. Vegetation-wave interactions in salt marshes under storm surge conditions[J]. Ecological Engineering, 2017, 100: 301−315. doi: 10.1016/j.ecoleng.2016.12.030
    [15] Temmerman S, Horstman E M, Krauss K W, et al. Marshes and mangroves as nature-based coastal storm buffers[J]. Annual Review of Marine Science, 2023, 15: 95−118. doi: 10.1146/annurev-marine-040422-092951
    [16] 张振伟, 刘贞文, 刘必劲. 风暴潮与盐沼相互作用研究进展[J]. 海洋开发与管理, 2019, 36(7): 42−48. doi: 10.3969/j.issn.1005-9857.2019.07.008

    Zhang Zhenwei, Liu Zhenwen, Liu Bijin. A review of dynamic interactions between coastal storms and salt marshes[J]. Ocean Development and Management, 2019, 36(7): 42−48. doi: 10.3969/j.issn.1005-9857.2019.07.008
    [17] 任璘婧, 李秀珍, 杨世伦, 等. 崇明东滩盐沼植被变化对滩涂湿地促淤消浪功能的影响[J]. 生态学报, 2014, 34(12): 3350−3358.

    Ren Linjing, Li Xiuzhen, Yang Shilun, et al. The impact of salt marsh change on sediment accumulation and wave attenuation at the East Chongming Island[J]. Acta Ecologica Sinica, 2014, 34(12): 3350−3358.
    [18] Barras J A. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita[C]//Science and the Storms: the USGS Response to the Hurricanes of 2005. Dennis: USGS, 2005: 97−112.
    [19] Vandenbruwaene W, Bouma T J, Meire P, et al. Bio‐geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change[J]. Earth Surface Processes and Landforms, 2013, 38(2): 122−132. doi: 10.1002/esp.3265
    [20] 杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4): 75−80.

    Yang Shilun, Shi Zhong, Zhao Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Haiyang Xuebao, 2001, 23(4): 75−80.
    [21] Ma Gangfeng, Han Yun, Niroomandi A, et al. Numerical study of sediment transport on a tidal flat with a patch of vegetation[J]. Ocean Dynamics, 2015, 65(2): 203−222. doi: 10.1007/s10236-014-0804-8
    [22] 秦伟, 曹文洪, 郭乾坤, 等. 植被格局对侵蚀产沙影响的研究评述[J]. 生态学报, 2017, 37(14): 4905−4912.

    Qin Wei, Cao Wenhong, Guo Qiankun, et al. Review of the effects of vegetation patterns on soil erosion and sediment yield[J]. Acta Ecologica Sinica, 2017, 37(14): 4905−4912.
    [23] Ludwig J A, Wilcox B P, Breshears D D, et al. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes[J]. Ecology, 2005, 86(2): 288−297. doi: 10.1890/03-0569
    [24] Li Li, Xu Jiayang, Ren Yihan, et al. Effects of wave-current interactions on sediment dynamics in Hangzhou Bay during Typhoon Mitag[J]. Frontiers in Earth Science, 2022, 10: 931472. doi: 10.3389/feart.2022.931472
    [25] Boer M, Puigdefábregas J. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: a simulation study[J]. Earth Surface Processes and Landforms, 2005, 30(2): 149−167. doi: 10.1002/esp.1180
    [26] 沈中原. 坡面植被格局对水土流失影响的实验研究[D]. 西安: 西安理工大学, 2006.

    Shen Zhongyuan. Study on the effect of vegetation slope pattern on soil and water loss[D]. Xi’an: Xi’an University of Technology, 2006.
    [27] 丁文峰, 李勉. 不同坡面植被空间布局对坡沟系统产流产沙影响的实验[J]. 地理研究, 2010, 29(10): 1870−1878.

    Ding Wenfeng, Li Mian. Experimental study on the effect of slope vegetation distribution variation on runoff and sediment yield in slope-gully system[J]. Geographical Research, 2010, 29(10): 1870−1878.
    [28] 游珍, 李占斌, 蒋庆丰. 植被在坡面的不同位置对降雨产沙量影响[J]. 水土保持通报, 2006, 26(6): 28−31.

    You Zhen, Li Zhanbin, Jiang Qingfeng. Effect of vegetation’s position on slope on sediment yield induced by rainfall[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 28−31.
    [29] 刘红, 何青, 吉晓强, 等. 波流共同作用下潮滩剖面沉积物和地貌分异规律——以长江口崇明东滩为例[J]. 沉积学报, 2008, 26(5): 833−843.

    Liu Hong, He Qing, Ji Xiaoqiang, et al. Sediment and geomorphology differentiation of tidal flat profiles combined wave and current actions: a case of the east Chongming tidal flat, Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2008, 26(5): 833−843.
    [30] Yang Shilun, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657−671. doi: 10.1016/j.ecss.2007.10.024
    [31] Tian Bo, Zhang Liquan, Wang Xiangrong, et al. Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China[J]. Ecological Engineering, 2010, 36(10): 1383−1388. doi: 10.1016/j.ecoleng.2010.06.016
    [32] 张智伟. 台风天气下长江冲淡水扩展的响应机制[D]. 上海: 华东师范大学, 2020.

    Zhang Zhiwei. Dynamical response of Changjiang River plume extension to typhoon events[D]. Shanghai: East China Normal University, 2020.
    [33] 范吉庆. 台风对长江口潮间带湿地沉积动力过程的影响[D]. 上海: 华东师范大学, 2019.

    Fan Jiqing. Influence of typhoon on sedimentary dynamic process of intertidal wetland in Yangtze Estuary[D]. Shanghai: East China Normal University, 2019.
    [34] 杨世伦, 陈吉余. 试论植物在潮滩发育演变中的作用[J]. 海洋与湖沼, 1994, 25(6): 631−635.

    Yang Shilun, Chen Jiyu. The role of vegetation in mud coast processes[J]. Oceanologia et Limnologia Sinica, 1994, 25(6): 631−635.
    [35] 丁文慧, 姜俊彦, 李秀珍, 等. 崇明东滩南部盐沼植被空间分布及影响因素分析[J]. 植物生态学报, 2015, 39(7): 704−716. doi: 10.17521/cjpe.2015.0067

    Ding Wenhui, Jiang Junyan, Li Xiuzhen, et al. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 704−716. doi: 10.17521/cjpe.2015.0067
    [36] 杨世伦. 长江口沉积物粒度参数的统计规律及其沉积动力学解释[J]. 泥沙研究, 1994(3): 23−31.

    Yang Shilun. Statistic features for grain-size parameters of the Yangtze River Estuary and their hydrodynamic explanation[J]. Journal of Sediment Research, 1994(3): 23−31.
    [37] 张莹鑫, 张文祥, 史本伟, 等. 淤泥质潮间带植被-光滩沉积物稳定性研究——以长江口崇明东滩为例[J]. 华东师范大学学报(自然科学版), 2022(6): 169−177.

    Zhang Yingxin, Zhang Wenxiang, Shi Benwei, et al. Study on sediment stability between vegetation and bare flats in a muddy intertidal flat: a case study for Chongming Dongtan in the Yangtze River Estuary[J]. Journal of East China Normal University (Natural Science), 2022(6): 169−177.
    [38] Li Tianyou, Xue Liming, Zhang Xinmiao, et al. Harvested Spartina area performs better than native Scirpus in sedimentation and carbon preservation under storm surge[J]. Ocean & Coastal Management, 2024, 249: 107002.
    [39] Pei Haojie, Wan Peng, Li Changchun, et al. Accuracy analysis of UAV remote sensing imagery mosaicking based on structure-from-motion[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE, 2017: 5904-5907.
    [40] Genchi S A, Vitale A J, Perillo G M E, et al. Structure-from-motion approach for characterization of bioerosion patterns using UAV imagery[J]. Sensors, 2015, 15(2): 3593−3609. doi: 10.3390/s150203593
    [41] Küng O, Strecha C, Fua P, et al. Simplified building models extraction from ultra-light UAV imagery[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-1/C22. Zurich: ISPRS Zurich 2011 Workshop, 2011: 217-222.
    [42] Karasaka L, Keleş S H. CSF (Cloth simulation filtering) algoritmasının zemin noktalarını Filtrelemedeki Performans Analizi[J]. Afyon Kocatepe Ü niversitesi Fen ve Mühendislik Bilimleri Dergisi, 2020, 20(20): 267−275.
    [43] Li Yameng, Chen Qi, Li Chaokui, et al. Improvement of CSF based on a wide range of urban complex scenes[C]//Proceedings Volume 10779, Lidar Remote Sensing for Environmental Monitoring XVI. Honolulu: SPIE Asia-Pacific Remote Sensing, 2018: 1077911.
    [44] Oliver M A, Webster R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313−332. doi: 10.1080/02693799008941549
    [45] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152−159. doi: 10.3969/j.issn.1002-6819.2015.05.022

    Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152−159. doi: 10.3969/j.issn.1002-6819.2015.05.022
    [46] Chen Dezhi, Tang Jieping, Xing Fei, et al. Erosion and accretion of salt marsh in extremely shallow water stages[J]. Frontiers in Marine Science, 2023, 10: 1198536. doi: 10.3389/fmars.2023.1198536
    [47] Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7
    [48] 李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583−591.

    Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands[J]. Advances in Earth Science, 2007, 22(6): 583−591.
    [49] Figlus J, Sigren J M, Feagin R A, et al. The unique ability of fine roots to reduce vegetated coastal dune erosion during wave collision[J]. Frontiers in Built Environment, 2022, 8: 904837. doi: 10.3389/fbuil.2022.904837
    [50] Hauser S, Meixler M S, Laba M. Quantification of impacts and ecosystem services loss in new jersey coastal wetlands due to hurricane sandy storm surge[J]. Wetlands, 2015, 35(6): 1137−1148. doi: 10.1007/s13157-015-0701-z
    [51] Zhao Chunhong, Gao Jian’en, Huang Yuefei, et al. Effects of vegetation stems on hydraulics of overland flow under varying water discharges[J]. Land Degradation & Development, 2016, 27(3): 748−757.
    [52] Kastler J A, Wiberg P L. Sedimentation and boundary changes of Virginia salt marshes[J]. Estuarine, Coastal and Shelf Science, 1996, 42(6): 683−700. doi: 10.1006/ecss.1996.0044
    [53] Francalanci S, Bendoni M, Rinaldi M, et al. Ecomorphodynamic evolution of salt marshes: experimental observations of bank retreat processes[J]. Geomorphology, 2013, 195: 53−65. doi: 10.1016/j.geomorph.2013.04.026
    [54] Molina A, Govers G, Cisneros F, et al. Vegetation and topographic controls on sediment deposition and storage on gully beds in a degraded mountain area[J]. Earth Surface Processes and Landforms, 2009, 34(6): 755−767. doi: 10.1002/esp.1747
    [55] Sun Ruoxiu, Ma Li, Zhang Shouhong, et al. Study on landscape patches influencing hillslope erosion processes and flow hydrodynamics in the Loess Plateau of western Shanxi Province, China[J]. Water, 2020, 12(11): 3201. doi: 10.3390/w12113201
    [56] Ma Gangfeng, Han Yun, Niroomandi A, et al. Numerical study of sediment transport on a tidal flat with a patch of vegetation[J]. Ocean Dynamics, 2015, 65(2): 203−222.
    [57] Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
    [58] Zhu Shibing, Chen Yining, Yan Weibing, et al. The hummocky patches and associated sediment dynamics over an accretional intertidal flat[J]. Frontiers in Earth Science, 2022, 10: 908351. doi: 10.3389/feart.2022.908351
    [59] Zhang Xingchang, Shao Ming’an. Effects of vegetation coverage and management practice on soil nitrogen loss by erosion in a hilly region of the Loess Plateau in China[J]. Acta Botanica Sinica, 2003, 45(10): 1195−1203.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 修回日期:  2025-01-24
  • 网络出版日期:  2025-04-16

目录

    /

    返回文章
    返回