留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁山港红树林湿地沉积物有机碳来源解析及其埋藏通量

杨奕昕 张芬芬 任旭 杜金秋 廖日权 杜金洲

杨奕昕,张芬芬,任旭,等. 铁山港红树林湿地沉积物有机碳来源解析及其埋藏通量[J]. 海洋学报,2025,47(x):1–11
引用本文: 杨奕昕,张芬芬,任旭,等. 铁山港红树林湿地沉积物有机碳来源解析及其埋藏通量[J]. 海洋学报,2025,47(x):1–11
Yang Yixin,Zhang Fenfen,Ren Xu, et al. Historical Variation in Sources of Sedimentary Organic Carbon and Burial Fluxes in Mangrove Wetlands of Tieshangang Bay[J]. Haiyang Xuebao,2025, 47(x):1–11
Citation: Yang Yixin,Zhang Fenfen,Ren Xu, et al. Historical Variation in Sources of Sedimentary Organic Carbon and Burial Fluxes in Mangrove Wetlands of Tieshangang Bay[J]. Haiyang Xuebao,2025, 47(x):1–11

铁山港红树林湿地沉积物有机碳来源解析及其埋藏通量

基金项目: 国家重点研发计划(2022YFE0209300);广西北部湾海洋环境变化与灾害研究重点实验室(北部湾大学)开放课题(2022KF003)。
详细信息
    作者简介:

    杨奕昕(1997—),女,宁夏银川市人,硕士研究生,主要研究河口环境化学。E−mail:kaaaaaa1x@163.com

    通讯作者:

    张芬芬,研究员,博士生导师,主要研究碳的生物地球化学循环,环境记录与全球变化。E−mail: ffzhang@sklec.ecnu.edu.cn

  • 中图分类号: P736.21

Historical Variation in Sources of Sedimentary Organic Carbon and Burial Fluxes in Mangrove Wetlands of Tieshangang Bay

  • 摘要: 红树林湿地是高效的滨海蓝色碳汇,在调节全球碳循环中发挥着重要的作用。本研究借助沉积物的粒度、总有机碳(TOC)与总氮(TN)的比值(TOC/TN)、有机碳同位素(δ13C)和210Pb年代学等相关参数,研究广西铁山港红树林湿地有机碳(OC)来源、沉积物沉积通量、OC埋藏通量的时间变化趋势。结果表明:沉积物粒度以粉砂、砂为主,TOC含量和δ13C变化范围分别为0.26%~3.96%、−27.4~−21.4‰,TOC、TN、δ13C具有较好的一致性。铁山港红树林湿地OC来源中陆源占35.0%,海源占30.5%,红树林源占34.5%。在100年来沉积物有机碳通量平均值为87.6 g C·m−2·a−1,0~50 cm区间的沉积物碳储量占沉积物柱中(95 cm)总储量的65.3%。自1961年以后,因水库大坝建设,沉积物沉积通量总体减少;1961—1999年间,由于气候,流域周围人类干扰等因素,导致更多陆源有机碳的输入和埋藏;1999—2020年,极端天气和自然因素下,红树林湿地遭破坏退化,从而降低了TOC含量及OC埋藏通量;2010年以来,沉积物中TOC含量增加,这可能与其含水量较高、凋落物累积和根系生长有关,OC来源以红树林源的贡献为主。
  • 图  1  广西铁山港红树林采样点(D1)

    Fig.  1  Sampling location (D1) for mangrove forests in Tieshangang Bay, Guangxi

    图  2  沉积物三角分布图

    Fig.  2  Triangular distribution of sediment

    图  3  沉积物粒度参数和含水量的垂直分布

    Fig.  3  Vertical distribution patterns of sedimentary grain size parameters and water content

    图  4  柱状沉积物210Pb、226Ra、210Pbex活度垂向分布

    Fig.  4  Vertical distribution of 210Pb, 226Ra, excess (210Pbex) activity in sediment

    图  5  铁山港红树林TOC、TN、C/N、δ13C、有机碳通量、不同有机质贡献率的年际变化

    Fig.  5  Inter−annual variations of TOC, C/N, δ13C, OCAR and contribution rate of different organic matter sources in Tieshangang Bay mangrove forest

    图  6  沉积物沉积通量以及红树林面积等各指标的年际变化

    a. 沉积物沉积通量, b. 广西红树林面积[30, 40], c. 北海市人口(数据来自http://tjj.gxzf.gov.cn), d. 广西人工岸线[41], e. 北海市GDP和工农业生产总值(数据来自http://tjj.gxzf.gov.cn

    Fig.  6  The inter−annual variations of MAR and other indicators.

    a. Mass Accumulation Rate(MAR), b. mangrove area in Guangxi, c. the population of Beihai City, d. artificial shoreline, d. GDP and Gross industrial and agricultural products

    表  1  典型红树林湿地沉积物有机碳埋藏通量

    Tab.  1  Organic carbon burial fluxes of the typical mangrove wetlands

    地点碳埋藏(平均)/g C·m−2·a−1参考文献
    浙江105.9±23.9胡凯杰等,2025[60]
    福建125.3±56.4胡凯杰等,2025[60]
    广东250覃国铭等,2023[61]
    广西176.2褚冠宇,2022[49]
    海南64Chu等,2020[49];孙江,
    2022[55];Jiang等,2024[62]
    广西珍珠湾84.5褚冠宇,2022[49]
    广西南流江309.6徐慧鹏,2020[63]
    中国200王秀君等,2016[64]
    全球174Laffoley和Grimsditch,2009[65]
    广西铁山港87.6本研究
    下载: 导出CSV
  • [1] Mcleod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560. doi: 10.1890/110004
    [2] Nellemann C, Corcoran E, Duarte C M, et al. Blue Carbon: the Role of Healthy Oceans in Binding Carbon: A Rapid Response Assessment[M]. Spain: UNEP, 2009.
    [3] 章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641

    Zhang Haibo, Luo Yongming, Liu Xinghua, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica: Terrae, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641
    [4] Donato D C, Kauffman J B, Murdiyarso D, et al. Mangroves among the most carbon−rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293−297. doi: 10.1038/ngeo1123
    [5] Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6: 195−219. doi: 10.1146/annurev-marine-010213-135020
    [6] Bouillon S, Borges A V, Castañeda−Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2013.
    [7] Rosentreter J A, Maher D T, Erler D V, et al. Methane emissions partially offset “blue carbon” burial in mangroves[J]. Science Advances, 2018, 4(6): eaao4985. doi: 10.1126/sciadv.aao4985
    [8] Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834): 41−42.
    [9] Grellier S, Janeau J L, Dang Hoai N, et al. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam)[J]. Science of the Total Environment, 2017, 593−594: 654−663. doi: 10.1016/j.scitotenv.2017.03.204
    [10] Sippo J Z, Sanders C J, Santos I R, et al. Coastal carbon cycle changes following mangrove loss[J]. Limnology and oceanography, 2020, 65(11): 2642−2656. doi: 10.1002/lno.11476
    [11] Li M S, Lee S Y. Mangroves of China: a brief review[J]. Forest Ecology and Management, 1997, 96(3): 241−259. doi: 10.1016/S0378-1127(97)00054-6
    [12] Gonneea M E, Paytan A, Herrera−Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J]. Estuarine, Coastal and Shelf Science, 2004, 61(2): 211−227. doi: 10.1016/j.ecss.2004.04.015
    [13] 李小维, 黄子眉, 陈剑锋, 等. 基于VSD模型的铁山港湾红树林生态系统脆弱性初步评价[J]. 热带海洋学报, 2018, 37(2): 47−54.

    Li Xiaowei, Huang Zimei, Chen Jianfeng, et al. Preliminary assessment of Tieshangang Bay mangrove ecosystem vulnerability based on VSD model[J]. Journal of Tropical Oceanography, 2018, 37(2): 47−54.
    [14] 莫权芳, 钟仕全. 基于Landsat数据的铁山港区红树林变迁及其驱动力分析研究[J]. 科学技术与工程, 2014, 14(23): 8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002

    Mo Quanfang, Zhong Shiquan. Analysis of mangrove changes and its driving forces based on landsat data in Tieshangang[J]. Science Technology and Engineering, 2014, 14(23): 8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002
    [15] 韦蔓新, 范航清, 何本茂, 等. 广西铁山港红树林区水体的营养水平与结构特征[J]. 热带海洋学报, 2013, 32(4): 84−91. doi: 10.3969/j.issn.1009-5470.2013.04.013

    Wei Manxin, Fan Hangqing, He Benmao, et al. Nutritional level and component characteristic of water in mangrove area of Tieshan Bay[J]. Journal of Tropical Oceanography, 2013, 32(4): 84−91. doi: 10.3969/j.issn.1009-5470.2013.04.013
    [16] 王鑫. 不同典型体系沉积物中陆源有机质的分布和活性铁的潜在碳汇效应[D]. 上海: 华东师范大学, 2021.

    Wang Xin. Distribution of terrestrial organic matter and potential carbon sink effect of reactive iron in sediments of different typical systems[D]. Shanghai: East China Normal University, 2021.
    [17] Sanchez−Cabeza J A, Ruiz−Fernández A C. 210Pb sediment radiochronology: an integrated formulation and classification of dating models[J]. Geochimica et Cosmochimica Acta, 2012, 82: 183−200. doi: 10.1016/j.gca.2010.12.024
    [18] Li Dongyi, Xu Yonghang, Li Yunhai, et al. Sedimentary records of human activity and natural environmental evolution in sensitive ecosystems: a case study of a coral nature reserve in Dongshan Bay and a mangrove forest nature reserve in Zhangjiang River estuary, Southeast China[J]. Organic Geochemistry, 2018, 121: 22−35. doi: 10.1016/j.orggeochem.2018.02.011
    [19] Peterson B J, Howarth R W, Garritt R H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs[J]. Science, 1985, 227(4692): 1361−1363. doi: 10.1126/science.227.4692.1361
    [20] Cheng Xiaoli, Luo Yiqi, Chen Jiquan, et al. Short−term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant−dominated tidal wetlands on a growing estuarine Island[J]. Soil Biology and Biochemistry, 2006, 38(12): 3380−3386. doi: 10.1016/j.soilbio.2006.05.016
    [21] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
    [22] Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7/8): 319−361.
    [23] Hu Jianfang, Peng Pingan, Jia Guodong, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 2006, 98(2/4): 274−285.
    [24] Loneragan N R, Bunn S E, Kellaway D M. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable−isotope study[J]. Marine Biology, 1997, 130(2): 289−300. doi: 10.1007/s002270050248
    [25] Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261−269. doi: 10.1007/s00442-003-1218-3
    [26] He Biyan, Dai Minhan, Huang W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences, 2010, 7(10): 3343−3362. doi: 10.5194/bg-7-3343-2010
    [27] Xia Peng, Meng Xianwei, Li Zhen, et al. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years: stable carbon isotopes and mangrove pollen[J]. Organic Geochemistry, 2015, 85: 32−41. doi: 10.1016/j.orggeochem.2015.04.003
    [28] Yu Fengling, Zong Yongqiang, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618−630. doi: 10.1016/j.ecss.2010.02.018
    [29] 黄龙, 张志珣, 耿威, 等. 闽浙沿岸东部海域表层沉积物粒度特征及其沉积环境[J]. 海洋地质与第四纪地质, 2014, 34(6): 161−169.

    Huang Long, Zhang Zhixun, Geng Wei, et al. Grain size of surface sediments in the eastern Min−Zhe coast: an indicator of sedimentary environments[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 161−169.
    [30] Fan Hangqing. Mangrove resources, human disturbance and rehabilitation action in China[J]. Chinese Biodiversity, 1995, 3(Sl): 49−54.
    [31] Walling D E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges[M]. Paris: UNESCO, 2009.
    [32] Walsh J P, Nittrouer C A. Mangrove−bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua[J]. Marine Geology, 2004, 208(2/4): 225−248.
    [33] Gupta H, Kao S J, Dai Minhan. The role of mega dams in reducing sediment fluxes: a case study of large Asian rivers[J]. Journal of Hydrology, 2012, 464−465: 447−458. doi: 10.1016/j.jhydrol.2012.07.038
    [34] Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600): 1447−1452. doi: 10.1126/science.abn7980
    [35] Martín−Antón M, Negro V, Del Campo J M, et al. Review of coastal land reclamation situation in the world[J]. Journal of Coastal Research, 2016, 75(sp1): 667−671. doi: 10.2112/SI75-133.1
    [36] Tian Bo, Wu Wenting, Yang Zhaoqing, et al. Drivers, trends, and potential impacts of long−term coastal reclamation in China from 1985 to 2010[J]. Estuarine, Coastal and Shelf Science, 2016, 170: 83−90. doi: 10.1016/j.ecss.2016.01.006
    [37] Hackney C R, Darby S E, Parsons D R, et al. River bank instability from unsustainable sand mining in the lower Mekong River[J]. Nature Sustainability, 2020, 3(3): 217−225. doi: 10.1038/s41893-019-0455-3
    [38] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61−69.

    Shi Min, Li Huiying, Jia Mingming. Spatio−temporal variations in mangrove forests in the Shankou Mangrove Nature Reserve based on the GEE cloud platform and Landsat data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 61−69.
    [39] Jia Mingming, Wang Zongming, Zhang Yuanzhi, et al. Landsat−based estimation of mangrove forest loss and restoration in Guangxi province, China, influenced by human and natural factors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 311−323. doi: 10.1109/JSTARS.2014.2333527
    [40] 贾明明, 王宗明, 毛德华, 等. 面向可持续发展目标的中国红树林近50年变化分析[J]. 科学通报, 2021, 66(30): 3886−3901. doi: 10.1360/TB-2020-1412

    Jia Mingming, Wang Zongming, Mao Dehua, et al. Spatial−temporal changes of China’s mangrove forests over the past 50 years: an analysis towards the Sustainable Development Goals (SDGs)[J]. Chinese Science Bulletin, 2021, 66(30): 3886−3901. doi: 10.1360/TB-2020-1412
    [41] 周相君. 1973−2013年广西大陆海岸线遥感变迁分析[D]. 青岛: 国家海洋局第一海洋研究所, 2014.

    Zhou Xiangjun. Shoreline change analysis of Guangxi mainland based on remote sensing from 1973 to 2013[D]. Qingdao: The First Institute of Oceanography, Soa, 2014.
    [42] Kelleway J J, Saintilan N, Macreadie P I, et al. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes[J]. Ecosystems, 2016, 19(5): 865−880. doi: 10.1007/s10021-016-9972-3
    [43] Santín C, González−Pérez M, Otero X L, et al. Characterization of humic substances in salt marsh soils under sea rush (Juncus maritimus)[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 541−548. doi: 10.1016/j.ecss.2008.05.007
    [44] Russell S K, Gillanders B M, Detmar S, et al. Determining environmental drivers of fine−scale variability in blue carbon soil stocks[J]. Estuaries and Coasts, 2024, 47(1): 48−59. doi: 10.1007/s12237-023-01260-4
    [45] 梁文, 李智, 范航清, 等. 防城港湾红树林表层沉积物粒度分形特征及与环境因子的相关性[J]. 应用海洋学学报, 2013, 32(2): 184−192. doi: 10.3969/J.ISSN.2095-4972.2013.02.006

    Liang Wen, Li Zhi, Fan Hangqing, et al. Fractal characteristics and correlation with environmental factor on the surface sediments in mangrove areas of Fangchenggang Bay[J]. Journal of Applied Oceanography, 2013, 32(2): 184−192. doi: 10.3969/J.ISSN.2095-4972.2013.02.006
    [46] Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences, 2011, 108(49): 19473−19481. doi: 10.1073/pnas.1017982108
    [47] Lin W J, Lin C W, Wu H H, et al. Mangrove carbon budgets suggest the estimation of net production and carbon burial by quantifying litterfall[J]. Catena, 2023, 232: 107421. doi: 10.1016/j.catena.2023.107421
    [48] Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 1−13. doi: 10.1016/j.ecss.2007.08.024
    [49] 褚冠宇. 基于风暴潮记录的广西红树林沉积与碳埋藏特征及脆弱性研究[D]. 南宁: 广西大学, 2021.

    Chu Guanyu. Study on sedimentation and carbon burial characteristics and vulnerability of mangroves based on storm surge history in Guangxi[D]. Nanning: Guangxi University, 2021.
    [50] Gacia E, Duarte C M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension[J]. Estuarine, Coastal and Shelf Science, 2001, 52(4): 505−514. doi: 10.1006/ecss.2000.0753
    [51] Chen Min, Guo Laodong, Ma Qiang, et al. Zonal patterns of δ13C, δ15N and 210Po in the tropical and subtropical North Pacific[J]. Geophysical Research Letters, 2006, 33(4): L04609.
    [52] Alongi D M. The impact of climate change on mangrove forests[J]. Current Climate Change Reports, 2015, 1(1): 30−39. doi: 10.1007/s40641-015-0002-x
    [53] Feller I C, Whigham D F, Mckee K L, et al. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida[J]. Oecologia, 2003, 134(3): 405−414. doi: 10.1007/s00442-002-1117-z
    [54] Ouyang Xiaoguang, Lee S Y, Connolly R M. The role of root decomposition in global mangrove and saltmarsh carbon budgets[J]. Earth−Science Reviews, 2017, 166: 53−63. doi: 10.1016/j.earscirev.2017.01.004
    [55] 孙江. 东寨港红树林有机碳来源、埋藏及福清宁德核电站邻近海域的环境效应[D]. 汕头: 汕头大学, 2022.

    Sun Jiang. Sources and burial of organic carbon in the Dongzhai port mangrove and environmental effects in the sea area adjacent to Fuqing and Ningde nuclear power plants[D]. Shantou: Shantou University, 2022.
    [56] Kusumaningtyas M A, Hutahaean A A, Fischer H W, et al. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 310−323. doi: 10.1016/j.ecss.2018.12.007
    [57] Kauffman J B, Adame M F, Arifanti V B, et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients[J]. Ecological Monographs, 2020, 90(2): e01405. doi: 10.1002/ecm.1405
    [58] Castañeda−Moya E, Twilley R R, Rivera−Monroy V H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA[J]. Forest Ecology and Management, 2013, 307: 226−241. doi: 10.1016/j.foreco.2013.07.011
    [59] Arnaud M, Krause S, Norby R J, et al. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves[J]. Global Change Biology, 2023, 29(12): 3256−3270. doi: 10.1111/gcb.16701
    [60] 胡凯杰, 王蔚, 钱威, 等. 中国红树林植被和土壤碳积累速率及其影响因素[J]. 应用生态学报, 2025, 36(1): 121−131.

    Hu Kaijie, Wang Wei, Qian Wei, et al. Carbon accumulation rates of vegetation and soil in mangroves of China and their influencing factors[J]. Chinese Journal of Applied Ecology, 2025, 36(1): 121−131.
    [61] 覃国铭, 张靖凡, 周金戈, 等. 广东省红树林土壤碳储量及固碳潜力研究[J]. 热带地理, 2023, 43(1): 23−30.

    Qin Guoming, Zhang Jingfan, Zhou Jinge, et al. Soil carbon stock and potential carbon storage in the mangrove forests of Guangdong[J]. Tropical Geography, 2023, 43(1): 23−30.
    [62] Jiang Zhongmao, Sanders C J, Xin Kun, et al. Increasing carbon and nutrient burial rates in mangroves coincided with coastal aquaculture development and water eutrophication in NE Hainan, China[J]. Marine Pollution Bulletin, 2024, 199: 115934. doi: 10.1016/j.marpolbul.2023.115934
    [63] 徐慧鹏. 广西典型红树林沉积与碳埋藏特征及其扩张历史研究[D]. 南宁: 广西大学, 2020.

    Xu Huipeng. Study on sedimentary and carbon burial characteristics and expansion history of typical mangroves in Guangxi[D]. Nanning: Guangxi University, 2020.
    [64] 王秀君, 章海波, 韩广轩. 中国海岸带及近海碳循环与蓝碳潜力[J]. 中国科学院院刊, 2016, 31(10): 1218−1225.

    Wang Xiujun, Zhang Haibo, Han Guangxuan. Carbon cycle and "blue carbon" potential in China's coastal zone[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1218−1225.
    [65] Laffoley D, Grimsditch G D. The Management of Natural Coastal Carbon Sinks[M]. Gland: IUCN, 2009.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-28
  • 修回日期:  2025-02-25
  • 网络出版日期:  2025-04-11

目录

    /

    返回文章
    返回