Distribution and budget of nitrogen and phosphorus in the coastal area of Rushan Bay
-
摘要: 基于2009年6–9月,2014年5月,2014年7–8月在乳山湾外邻近海域的综合调查资料,分析了该开放海域水体与沉积物中氮、磷营养盐的组成和分布,并在潮汐潮流数值模式计算水通量的基础上分析了近岸开放区域无机氮(DIN)和无机磷(DIP)的循环与收支的主要过程,量化了潮汐潮流、初级生产的消耗与转化、底界面过程与内部循环等过程对氮和磷营养盐循环与收支的影响。结果表明,夏季乳山湾外邻近海域水体DIN和DIP的浓度与分布受陆源输入和潮汐潮流的共同影响,高值均出现在湾口区域;沉积物-水界面存在DIN和DIP从沉积物向上覆水释放的现象,使得底层水体的氮、磷营养盐浓度高于表层水体。氮的收支表明,研究海域水体内部循环过程是初级生产所需DIN的主要来源,占初级生产总消耗量的86%,其次是水交换作用(11%),底界面扩散对初级生产的贡献相对较小(3%);水体DIN的移出主要是通过埋藏、向外海的输送和水体反硝化作用,其比例分别为80%、16%和4%。磷的收支显示,研究海域水体内部循环过程贡献了初级生产所需DIP的91%,其次是水交换作用(9%),底界面扩散对初级生产的贡献小于1%;水体DIP支出主要是通过沉积埋藏和向外海的输送,其比例分别为67%和33%。研究结果表明内部循环过程是近海水体氮和磷获得补充的主要途径,不过外部来源的氮、磷营养盐结构与系统内部具有显著的差异,且系统内磷的埋藏效率要高于氮,其必将对乳山湾外邻近海域营养盐结构和初级生产产生长远的影响。Abstract: Based on the seven comprehensive surveys in the coastal area of Rushan Bay in summer of 2009 and 2014, the distribution of nitrogen and phosphorus nutrients and nutrient structure were analyzed, and the budgets of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were estimated based on the water balance calculated by Princeton Ocean Model (POM). The results show that the high concentrations of DIN and DIP in adjacent area of Rushan Bay in summer appears in the mouth area of Rushan Bay. Their concentrations and distributions are influenced by the terrestrial inputs, tides and currents significantly. The DIN and DIP effluxes from the sediment to the overlying water at the sediment-water interface result in the higher concentrations of DIN and DIP in the bottom water than those in the surface water. The budget of DIN shows that internal cycling is the dominant source of DIN for the primary production, accounting for 86% of uptake by primary production, followed by water exchange (11%), and benthic efflux (3%); the removal of DIN in the water column is dominant by sedimentation (80%), export to the offshore (16%), and denitrification (4%). The DIP budget shows that internal cycling in the water column is the dominant source of DIP for the primary production, accounting for 91% of uptake by primary production, followed by water exchange (9%), and benthic efflux (lower than 1%); the removal of DIP in the water column is also dominant by sedimentation (67%) and export to the off shore by water exchange (33%). Based on the budgets of DIN and DIP, internal recycling is the dominant source for both of DIN and DIP supplies in the coastal water column, and the burial efficiency of P is higher than N into the sediment in the area off Rushan Bay. However, the different nutrient structure between external and internal sources of the study area would result in a long-term effect on the nutrient balance and primary production due to the differential budget of DIN and DIP.
-
Key words:
- nitrogen /
- phosphorus /
- nutrient structure /
- nutrient limitation /
- flux and budget /
- Rushan Bay
-
图 7 夏季乳山湾邻近海域水体氮、磷营养盐的收支(通量单位为106 mol)
FIn:平流作用下氮和磷营养盐的输入;FOut:平流作用下氮和磷营养盐的输出;FP:初级生产消耗的氮和磷营养盐,FR:内部循环再生的氮和磷营养盐,FS:ON和OP的沉积过程,FR = FP–FS;FDen:水体中氮的反硝化过程;FB:ON和OP的净埋藏,FE:沉积物–水界面氮和磷营养盐的释放,FM:沉积物中ON和OP的矿化过程,FM = FS–FB–FE;FC:水体中其他形态氮和磷的矿化降解,FC = FP–(FIn– FOut + FR + FE–FDen);收支计算的时间范围为夏季
Fig. 7 Budget of nitrogen and phosphorus nutrients in the coastal area of Rushan Bay in summer(flux unit: 106 mol)
FIn: N and P input by advection; FOut: N and P output by advection; FP: N and P uptake by primary production; FR: N and P regeneration from internal recycling, FR = FP−FS; FDen: denitrification; FS: sedimentation of ON and OP; FB: net burial of ON and OP; FE:benthic effluxes of N and P across the sediment-water interface; FM: mineralization of ON and OP (FM = FS−FB− FE); FC: cycling of other forms of N and P by mineralization, FC = FP− (FIn−FOut + FR + FE−FDen); time frame of the results is in summer
表 1 2009年夏季乳山湾邻近海域水体氮和磷的变化范围
Tab. 1 Nitrogen and phosphorus in the water column in the adjacent area of Rushan Bay in summer 2009
参数 层次 6月 7月 8月 9月 范围
/μmol·L–1平均值
/μmol·L–1范围
/μmol·L–1平均值
/μmol·L–1范围
/μmol·L–1平均值
/μmol·L–1范围
/μmol·L–1平均值
/μmol·L–1${\rm {NH}}_4^+$ 表层 0.05~2.95 0.76±0.66 0.05~3.32 0.83±0.53 0.38~4.13 1.32±0.73 0.01~6.05 0.53±1.00 底层 0.01~2.76 0.81±0.70 0.09~6.67 0.99±0.99 0.46~8.58 1.87±1.57 0.01~6.25 0.61±1.13 ${\rm {NO}}_2^-$ 表层 0.01~0.57 0.10±0.09 0.02~1.19 0.21±0.21 0.02~3.84 0.31±0.63 0.01~5.00 1.01±1.47 底层 0.01~0.44 0.10±0.09 0.12~0.89 0.21±0.15 0.02~6.19 0.59±1.12 0.02~6.19 1.07±1.35 ${\rm {NO}}_3^-$ 表层 0.02~14.7 3.47±3.33 0.16~23.7 2.63±4.72 0.16~11.0 2.21±2.85 0.05~17.3 2.65±3.95 底层 0.22~14.3 2.95±3.30 0.39~32.6 2.71±4.87 0.27~13.8 3.32±3.28 0.07~21.3 3.10±3.93 DIN 表层 0.49~16.6 4.33±3.60 0.76~25.6 3.67±4.96 0.86~13.9 3.84±3.41 0.13~27.1 4.19±5.90 底层 0.35~15.0 3.86±3.56 0.83~10.7 3.11±2.27 0.94~19.6 5.79±4.35 0.18~30.7 4.78±5.66 DIP 表层 0.06~0.89 0.29±0.19 0.06~1.53 0.47±0.31 0.14~0.74 0.32±0.11 0.10~0.96 0.28±0.13 底层 0.02~0.89 0.29±0.19 0.13~0.82 0.41±0.18 0.14~0.71 0.37±0.14 0.17~0.90 0.32±0.12 TN 表层 5.29~24.9 12.9±5.54 4.44~51.6 9.73±9.54 6.85~18.7 10.1±2.58 4.79~18.4 8.70±3.57 底层 3.23~25.0 11.4±6.99 3.52~27.6 9.59±5.96 6.89~20.1 11.6±3.42 3.57~46.2 16.3±8.73 TP 表层 0.50~1.28 0.72±0.18 0.27~1.70 0.73±0.35 0.43~1.24 0.63±0.17 0.14~0.97 0.48±0.21 底层 0.10~1.86 0.80±0.39 0.20~0.87 0.64±0.16 0.41~1.60 0.71±0.28 0.21~2.29 1.06±0.44 表 2 夏季乳山湾邻近海域收支区域边界相关参数与DIN和DIP的交换通量
Tab. 2 Parameters and diffusive fluxes of DIN and DIP across the boundaries of the study area in the adjacent area of Rushan Bay in summer
边界与方向 平均水深
/m界面跨度
/km界面面积
/km2平均流速
/m·s–1水交换通量
/km3·d–1DIN浓度
/μmol·L–1DIP浓度
/μmol·L–1DIN交换通量
/106 molDIP交换通量
/106 mol北侧 16 54 0.87 0.005 0.19 8.50 0.47 145 7.9 南侧 26 54 1.40 –0.004 –0.24 2.72 0.29 –60 –6.4 东侧 23 33 0.77 0.007 0.24 3.51 0.37 75 7.9 西侧 20 33 0.68 –0.007 –0.19 2.72 0.29 –43 –4.6 表 3 夏季乳山湾邻近海域沉积物−水界面DIN和DIP的交换通量
Tab. 3 Diffusive fluxes of DIP and DIN across the sediment-water interface in the adjacent area of Rushan Bay in summer
站位 孔隙率* 沉积速率* 时间 交换速率/μmol·m–2·d–1 DIP ${\rm {NH}}_4^+ $ ${\rm {NO}}_3^-$ ${\rm {NO}}_2^-$ DIN C1 0.764 1.63 7月 0.86 238 17.5 2.28 258 C2 0.753 1.44 5月 0.09 225 –26.9 0.94 199 8月 0.09 135 3.6 –0.22 139 C5 0.749 1.62 5月 0.02 106 7.6 0.17 113 注:孔隙率为沉积物上层0~5 cm的平均值;*孔隙率和沉积速率参考文献[13]。 -
[1] Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926−929. doi: 10.1126/science.1156401 [2] Seitzinger S P, Mayorga E, Bouwman A F, et al. Global river nutrient export: a scenario analysis of past and future trends[J]. Global Biogeochemical Cycles, 2010, 24(4): GB0A08. [3] Liu Sumei, Zhang Jianbo, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research, 2003, 23(11/13): 1161−1174. [4] Liu Sumei, Li Lingwei, Zhang Zhinan. Inventory of nutrients in the Bohai[J]. Continental Shelf Research, 2011, 31(16): 1790−1797. doi: 10.1016/j.csr.2011.08.004 [5] Jiang Zhibing, Liu Jingjing, Chen Jianfang, et al. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) Estuary during the past 50 years[J]. Water Research, 2014, 54: 1−11. doi: 10.1016/j.watres.2014.01.032 [6] Liu Sumei. Response of nutrient transports to water-sediment regulation events in the Huanghe Basin and its impact on the biogeochemistry of the Bohai[J]. Journal of Marine Systems, 2015, 141: 59−70. doi: 10.1016/j.jmarsys.2014.08.008 [7] Su Ni, Du Jinzhou, Li Ying, et al. Evaluation of surface water mixing and associated nutrient fluxes in the East China Sea using 226Ra and 228Ra[J]. Marine Chemistry, 2013, 156: 108−119. doi: 10.1016/j.marchem.2013.04.009 [8] 赵晨英, 臧家业, 刘军, 等. 黄渤海氮磷营养盐的分布、收支与生态环境效应[J]. 中国环境科学, 2016, 36(7): 2115−2127. doi: 10.3969/j.issn.1000-6923.2016.07.032Zhao Chenying, Zang Jiaye, Liu Jun, et al. Distribution and budget of nitrogen and phosphorus and their influence on the ecosystem in the Bohai Sea and Yellow Sea[J]. China Environmental Science, 2016, 36(7): 2115−2127. doi: 10.3969/j.issn.1000-6923.2016.07.032 [9] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 12763.4–2007, 海洋调查规范 第4部分: 海水化学要素调查[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Management Committee of China. GB 12763.4–2007, Specifications for oceanographic survey—Part 4: Survey of chemical parameters in sea water[S]. Beijing: China Standards Press, 2008. [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378–2007, 海洋监测规范[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Management Committee of China. GB 17378–2007, The specification for marine monitoring[S]. Beijing: China Standards Press, 2008. [11] 刘军, 于志刚, 臧家业, 等. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564−578. doi: 10.11867/j.issn.1001-8166.2015.05.564Liu Jun, Yu Zhigang, Zang Jiaye, et al. Distribution and budget of organic carbon in the Bohai and Yellow Seas[J]. Advances in Earth Science, 2015, 30(5): 564−578. doi: 10.11867/j.issn.1001-8166.2015.05.564 [12] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7): 1460−1482. doi: 10.4319/lo.1992.37.7.1460 [13] Liu Jun, Zang Jiaye, Zhao Chenying, et al. Phosphorus speciation, transformation, and preservation in the coastal area of Rushan Bay[J]. Science of the Total Environment, 2016, 565: 258−270. doi: 10.1016/j.scitotenv.2016.04.177 [14] Blumberg A F, Mellor G L. A description of a three dimensional coastal ocean circulation model[C]//Three-Dimensional Coastal Ocean Models. Washington: American Geophysical Union, 1987: 1–16. [15] 臧家业, 赵晨英, 刘军, 等. 乳山湾邻近海域有机碳的分布与底界面过程[J]. 中国环境科学, 2017, 37(3): 1089−1102.Zang Jiaye, Zhao Chenying, Liu Jun, et al. Characteristics and benthic processes of organic carbon in the adjacent area of Rushan Bay[J]. China Environmental Science, 2017, 37(3): 1089−1102. [16] Silsbe G M, Behrenfeld M J, Halsey K H, et al. The CAFE model: a net production model for global ocean phytoplankton[J]. Global Biogeochemical Cycles, 2016, 30(12): 1756−1777. doi: 10.1002/2016GB005521 [17] Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46(3): 205−221. [18] Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744): 525−531. doi: 10.1038/22941 [19] Andrews J E, Burgess D, Cave R R, et al. Biogeochemical value of managed realignment, Humber Estuary, UK[J]. Science of the Total Environment, 2006, 371(1/3): 19−30. [20] Boudreau B P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments[M]. Berlin: Springer-Verlag, 1997: 91–140. [21] Burdige D J, Berelson W M, Coale K H, et al. Fluxes of dissolved organic carbon from California continental margin sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1507−1515. doi: 10.1016/S0016-7037(99)00066-6 [22] Lettmann K A, Riedinger N, Ramlau R, et al. Estimation of biogeochemical rates from concentration profiles: A novel inverse method[J]. Estuarine, Coastal and Shelf Science, 2012, 100: 26−37. doi: 10.1016/j.ecss.2011.01.012 [23] Seitzinger S, Harrison J A, Böhlke J K, et al. Denitrification across landscapes and waterscapes: A synthesis[J]. Ecological Applications, 2006, 16(6): 2064−2090. doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 [24] Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiology Reviews, 1999, 23(5): 563−590. doi: 10.1111/j.1574-6976.1999.tb00414.x [25] Grüneberg B, Dadi T, Lindim C, et al. Effects of nitrogen and phosphorus load reduction on benthic phosphorus release in a riverine lake[J]. Biogeochemistry, 2015, 123(1/2): 185−202. [26] Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220−239. doi: 10.1016/j.earscirev.2016.07.007 [27] 贺惠, 甄毓, 米铁柱, 等. 乳山湾邻近海域沉积物中好氧氨氧化微生物分布特征[J]. 环境科学, 2015, 36(11): 4068−4073.He Hui, Zhen Yu, Mi Tiezhu, et al. Distribution of aerobic ammonia-oxidizing microorganisms in sediments from adjacent waters of Rushan Bay[J]. Environmental Science, 2015, 36(11): 4068−4073. [28] 贺惠, 甄毓, 米铁柱, 等. 乳山湾近海沉积物潜在硝化速率的测定[J]. 中国环境科学, 2017, 37(3): 1082−1088.He Hui, Zhen Yu, Mi Tiezhu, et al. Measurement of potential nitrification rates in sediments from adjacent waters of Rushan Bay[J]. China Environmental Science, 2017, 37(3): 1082−1088. [29] 马绍赛, 赵俊, 周诗赉, 等. 乳山湾水化学环境[J]. 海洋水产研究, 1996, 17(1): 63−70.Ma Shaosai, Zhao Jun, Zhou Shilai, et al. The hydrochemistry environment of Rushan Bay[J]. Marine Fisheries Research, 1996, 17(1): 63−70. [30] Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment[J]. Limnology and Oceanography, 1988, 33(4, part2): 796−822. [31] 辛福言, 陈碧鹃, 曲克明, 等. 乳山湾表层海水COD与氮、磷营养盐的分布及其营养状况[J]. 海洋水产研究, 2004, 25(5): 52−56.Xin Fuyan, Chen Bijuan, Qu Keming, et al. The distributions of COD, nitrogen and phosphorous nutrients and nutrient status in Rushan Bay[J]. Marine Fisheries Research, 2004, 25(5): 52−56. [32] Deborde J, Marchand C, Molnar N, et al. Concentrations and fractionation of carbon, iron, sulfur, nitrogen and phosphorus in mangrove sediments along an intertidal gradient (semi-arid climate, New Caledonia)[J]. Journal of Marine Science and Engineering, 2015, 3(1): 52−72. doi: 10.3390/jmse3010052 [33] Homoky W B, Severmann S, McManus J, et al. Dissolved oxygen and suspended particles regulate the benthic flux of iron from continental margins[J]. Marine Chemistry, 2012, 134–135: 59−70. doi: 10.1016/j.marchem.2012.03.003 [34] 朱炳德. 黄海及胶州湾沉积物中氮的形态研究[D]. 青岛: 中国海洋大学, 2007.Zhu Bingde. Study on the forms of nitrogen in the sediments of the Yellow Sea and Jiaozhou Bay[D]. Qingdao: Ocean University of China, 2007. [35] Wei Hao, Sun Jun, Moll A, et al. Phytoplankton dynamics in the Bohai Sea-observations and modelling[J]. Journal of Marine Systems, 2004, 44(3/4): 233−251. [36] Sharples J, Middelburg J J, Fennel K, et al. What proportion of riverine nutrients reaches the open ocean?[J]. Global Biogeochemical Cycles, 2017, 31(1): 39−58. doi: 10.1002/2016GB005483 [37] Slomp C P, van Cappellen P. The global marine phosphorus cycle: sensitivity to oceanic circulation[J]. Biogeosciences, 2007, 4(2): 155−171. doi: 10.5194/bg-4-155-2007 [38] Kriest I, Oschlies A. MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes[J]. Geoscientific Model Development, 2015, 8(9): 2929−2957. doi: 10.5194/gmd-8-2929-2015 [39] Bohlen L, Dale A W, Sommer S, et al. Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6094−6111. doi: 10.1016/j.gca.2011.08.010 [40] Qi Xiaohong, Liu Sumei, Zhang Jing, et al. Cycling of phosphorus in the Jiaozhou Bay[J]. Acta Oceanologica Sinica, 2011, 30(2): 62−74. doi: 10.1007/s13131-011-0106-7 [41] Liu Sumei, Zhang Jing, Chen Hongtao, et al. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China[J]. Progress in Oceanography, 2005, 66(1): 66−85. doi: 10.1016/j.pocean.2005.03.009 -