Composition and seasonal variations of water quality and phytoplankton volatile organic compounds in different aquaculture zones of large yellow croaker net cages
-
摘要: 浮游生物体内挥发性有机物(VOCs)是指浮游生物从水环境吸收或者体内代谢的高蒸汽压的低分子量化合物。本研究旨在揭示不同大黄鱼养殖区网箱水质参数与浮游生物挥发性有机化合物(VOCs)组成特征及其季节变化规律。研究选择了洞头、南麂和宁德三个采样点,并于夏季和秋季采集网箱浮游生物样本,采用全自动顶空固相微萃取-气相色谱质谱联用技术(HS-SPME-GC-MS)检测VOCs的组成,并分析其与水质参数之间的相关性。结果表明,大黄鱼网箱浮游生物VOCs主要由芳烃、烃类、酯类和酮类组成。总VOCs含量及种类在冬季显著高于夏季,且在洞头和南麂地区高于宁德地区。冬季的萘、夏季的2,4-二叔丁基苯酚以及夏冬季的Z-2-十二烯醇在宁德地区的水平显著高于洞头和南麂,表明宁德地区受到较强的人类活动影响,存在潜在的生态风险。夏季,二氢-2-甲基-3(2H)-呋喃酮、2-己醛和芳樟醇的水平在洞头和南麂网箱浮游生物中高于宁德,而冬季则在所有三个养殖区网箱中均未检测到。这些香味物质可能通过食物链在大黄鱼肌肉中积累,从而增强大黄鱼的风味品质。水体中的总氮、活性磷酸盐、总磷、氨氮、亚硝酸氮、硝酸氮、pH和溶解氧等水质参数在不同季节和区域之间表现出显著差异,且与VOCs的生成和分布密切相关。研究结果为深入理解海洋网箱水质健康状况提供了新的视角,并为开发VOCs作为环境监测标志物以及优化大黄鱼养殖品质提供了重要依据。Abstract: Volatile organic compounds (VOCs) in phytoplankton refer to low-molecular-weight compounds with high vapor pressure that are either absorbed from the aquatic environment or metabolized within the organisms. This study aimed to reveal the composition characteristics and seasonal variation patterns of water quality parameters and volatile organic compounds (VOCs) in phytoplankton from different large yellow croaker aquaculture net cages. Three sampling sites were selected, namely Dongtou (DT), Nanji (NJ), and Ningde (ND), and phytoplankton samples were collected from the net cages during the summer and autumn. The composition of VOCs was analyzed using automated headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), and its correlation with water quality parameters was examined. The results showed that the VOCs in the net cage phytoplankton of large yellow croaker were mainly composed of aromatics, hydrocarbons, esters, and ketones. The total VOC content and types were significantly higher in winter than in summer, with higher levels in DT and NJ compared to ND. In winter, the levels of naphthalene, and in summer, 2,4-di-tert-butylphenol and Z-2-dodecenol were significantly higher in ND than in DT and NJ, indicating the stronger influence of human activities and potential ecological risks in ND. In summer, the levels of dihydro-2-methyl-3(2H)-furanone, 2-hexanal, and linalool were higher in the phytoplankton of the DT and NJ net cages than in ND, while no detectable levels were found in the net cages of all three aquaculture zones in winter. These aromatic VOCs may accumulate in the muscle tissue of large yellow croaker through the food chain, enhancing its flavor quality. Water quality parameters such as total nitrogen, active phosphate, total phosphorus, ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, pH, and dissolved oxygen exhibited significant differences across seasons and regions, and were closely related to the production and distribution of VOCs. The findings provide new insights into the understanding of marine net cage water quality health and offer important references for the development of VOCs as environmental monitoring biomarkers and optimizing the quality of large yellow croaker aquaculture.
-
Key words:
- Phytoplankton /
- volatile organic compounds /
- water quality /
- flavor /
- pollutants
-
图 2 不同养殖区大黄鱼网箱中浮游生物VOCs数量和含量的夏冬分布
注: a. VOCs种类韦恩图;b. 单一VOCs相对含量散点分布图;c. 总VOCs相对含量,不同字母表示显著差异(p < 0.05)
Fig. 2 Summer and winter distribution of VOCs quantity and content in plankton from large yellow croaker cages in different aquaculture areas
a. Venn diagram of VOCs types; b. Scatter plot of relative content of VOCs; c. Relative total VOCs content, with different letters indicating significant differences (p < 0.05)
图 3 不同养殖区大黄鱼网箱中浮游生物VOCs组分含量的夏冬分布
注: a. VOCs组分的层次聚类结果及其相对丰度分布;b. VOCs组分的分布热图
Fig. 3 Summer and winter distribution of VOCs class content in plankton from large yellow croaker cages in different aquaculture areas
a. Hierarchical clustering results of VOCs components and their relative abundance distribution; b. Heatmap of VOCs components distribution
表 1 不同养殖区大黄鱼网箱水体的环境因子
Tab. 1 Environmental factors of water in large yellow croaker net cages across different aquaculture areas
冬季 夏季 洞头 南麂 宁德 洞头 南麂 宁德 T/℃ 10.53±2.05 a 10.9±1.98 a 12.72±2.49 a 28.97±0.52 b 29.83±0.78 b 29.4±0.85 b pH 8.09±0.04 b 8.34±0.08 b 7.83±0.07 a 8.09±0.08 b 8.13±0.04 b 7.98±0.07 ab DO/(mg/L) 5.67±0.21 b 5.93±0.21 b 4.37±0.17 a 5.73±0.17 b 6.17±0.17 b 4.63±0.22 a TP/(μg/L) 50.76±1.01 b 40.64±0.41 ab 105.65±1.27 d 77.98±7.8 c 26.04±5.56 a 105.14±14.53 d PO4-P/(μg/L) 42.41±0.29 bc 37.23±0.37 b 94.33±0.39 e 53.73±6.47 cd 21.02±3.31 a 56.22±4.61 d TN/(μg/L) 537.28±8.14 a 518.75±18.21 a 567.8±16.59 a 989.33±34.38 b 456.72±83.91 a 1034.64 ±158.72 bNH4-N/(μg/L) 44.96±5.99 b 29.77±2.58 a 107.61±6.01 c 25.73±2.11 a 18.38±1.25 a 27.05±2.69 a NO3-N/(μg/L) 190.25±25.72 d 147.17±25.04 cd 71.39±8.62 ab 102.74±11.52 bc 36.71±5.32 a 93.05±8.36 bc NO2-N/(μg/L) 0.52±0.09 a 0.33±0.04 a 29.21±0.32 c 29.07±3.01 c 8.46±0.63 b 51.87±4.82 d N/P 10.59±0.35 b 12.77±0.35 b 5.37±0.12 a 12.86±1.74 b 17.65±0.88 c 10.09±2.21 b 注:字母不同表示各组之间差异显著 (p<0.05)。 -
[1] Meng Yuqiong, Ma Rui, Shentu Jikang. Comparative studies on the quality of wild and formulated diet-fed large yellow croaker (Larimichthys crocea)[J]. Periodical of Ocean University of China, 2016, 46(11): 108−116. [2] Yuan Jigui, Lin H, Wu Lisheng, et al. Resource status and effect of long-term stock enhancement of large yellow croaker in China[J]. Frontiers in Marine Science, 2021, 8: 743836. doi: 10.3389/fmars.2021.743836 [3] Li Yan, Ai Qinghui, Mai Kangsen, et al. Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846)[J]. Journal of Ocean University of China, 2010, 9(4): 371−375. doi: 10.1007/s11802-010-1770-5 [4] Feng Yangyu, Hou Lichun, Ping Niexiang, et al. Development of mariculture and its impacts in Chinese coastal waters[J]. Reviews in Fish Biology and Fisheries, 2004, 14(1): 1−10. doi: 10.1007/s11160-004-3539-7 [5] Long Lina, Liu Huang, Cui Mingchao, et al. Offshore aquaculture in China[J]. Reviews in Aquaculture, 2024, 16(1): 254−270. doi: 10.1111/raq.12837 [6] Zheng Jialang, Chen Yonglong, Wan Faguo, et al. Comparative study on the quality of wild and ecologically farmed large yellow croaker through on-site synchronous sampling from the Nanji Archipelago in the East China Sea[J]. Aquaculture, 2024, 591: 741098. doi: 10.1016/j.aquaculture.2024.741098 [7] Zheng Jialang, Wan Faguo, Chen Yonglong, et al. Comparative study on the morphological characteristics, nutritional quality, and tastes of large yellow croaker from five cage culture areas: Relay farming improved fish quality[J]. Aquaculture, 2024, 590: 741030. doi: 10.1016/j.aquaculture.2024.741030 [8] 林永添. 三都湾大黄鱼网箱养殖区海水营养盐状况的初步研究[J]. 福建水产, 2013, 35(3): 211−217.Li Yongtian. A preliminary study of nutrients distribution in Pseudosciaena crocea net-cage culture area of Sandu Bay[J]. Journal of Fujian Fisheries, 2013, 35(3): 211−217. [9] 陈华伟, 吴卫飞. 象山港内新增网箱养殖污染物对海水水质的影响预测[J]. 渔业研究, 2021, 43(2): 183−192.Chen Huawei, Wu Weifei. Prediction of the influence of new cage culture pollutants on the seawater quality in Xiangshan Harbor[J]. Journal of Fisheries Research, 2021, 43(2): 183−192. [10] Boyd C E, Tucker C S, Viriyatum R. Interpretation of pH, acidity, and alkalinity in aquaculture and fisheries[J]. North American Journal of Aquaculture, 2011, 73(4): 403−408. doi: 10.1080/15222055.2011.620861 [11] Hlordzi V, Kuebutornye F K A, Afriyie G, et al. The use of Bacillus species in maintenance of water quality in aquaculture: a review[J]. Aquaculture Reports, 2020, 18: 100503. doi: 10.1016/j.aqrep.2020.100503 [12] Cengiz N, Guclu G, Kelebek H, et al. Characterization of volatile compounds in the water samples from rainbow trout aquaculture ponds eliciting off-odors: understanding locational and seasonal effects[J]. Environmental Science and Pollution Research, 2024, 31(52): 61819−61834. doi: 10.1007/s11356-024-35370-8 [13] Zuo Zhaojiang. Emission of cyanobacterial volatile organic compounds and their roles in blooms[J]. Frontiers in Microbiology, 2023, 14: 1097712. doi: 10.3389/fmicb.2023.1097712 [14] Olsen E, Nielsen F. Predicting vapour pressures of organic compounds from their chemical structure for classification according to the VOC directive and risk assessment in general[J]. Molecules, 2001, 6(4): 370−389. doi: 10.3390/60400370 [15] Amann A, De Lacy Costello B, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. Journal of Breath Research, 2014, 8(3): 034001. doi: 10.1088/1752-7155/8/3/034001 [16] Pickett J A, Khan Z R. Plant volatile‐mediated signalling and its application in agriculture: successes and challenges[J]. New Phytologist, 2016, 212(4): 856−870. doi: 10.1111/nph.14274 [17] Redeker K R, Cai L L, Dumbrell A J, et al. Chapter Four-Noninvasive analysis of the soil microbiome: biomonitoring strategies using the volatilome, community analysis, and environmental data[J]. Advances in Ecological Research, 2018, 59: 93−132. [18] Steinke M, Randell L, Dumbrell A J, et al. Chapter Three-Volatile biomarkers for aquatic ecological research[J]. Advances in Ecological Research, 2018, 59: 75−92. [19] Ding Xiaowei, Liu Kaihui, Gong Guoli, et al. Volatile organic compounds in the salt-lake sediments of the Tibet Plateau influence prokaryotic diversity and community assembly[J]. Extremophiles, 2020, 24(2): 307−318. doi: 10.1007/s00792-020-01155-3 [20] Durham B P, Dearth S P, Sharma S, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system[J]. Environmental Microbiology, 2017, 19(9): 3500−3513. doi: 10.1111/1462-2920.13834 [21] Weisskopf L, Schulz S, Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions[J]. Nature Reviews Microbiology, 2021, 19(6): 391−404. doi: 10.1038/s41579-020-00508-1 [22] Kampa M, Castanas E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362−367. doi: 10.1016/j.envpol.2007.06.012 [23] Podduturi R, Petersen M A, Vestergaard M, et al. Case study on depuration of RAS-produced pikeperch (Sander lucioperca) for removal of geosmin and other volatile organic compounds (VOCs) and its impact on sensory quality[J]. Aquaculture, 2021, 530: 735754. doi: 10.1016/j.aquaculture.2020.735754 [24] Zheng Jialang, Zhu Tao, Jin Wangyang, et al. Comparative analysis of carotenoids, fatty acids, minerals, tastes, and odor in the skin of wild versus farmed large yellow croaker: superior nutritional benefits with elevated heavy metal risks[J]. Aquaculture, 2025, 594: 741471. doi: 10.1016/j.aquaculture.2024.741471 [25] Chen Jiaxin, Guang Changtao, Xu Hao, et al. A review of cage and pen aquaculture: China[J]. FAO Fisheries Technical Paper, 2007, 498: 53−68. [26] Conley D J, Carstensen J, Aigars J, et al. Hypoxia is increasing in the coastal zone of the Baltic Sea[J]. Environmental Science & Technology, 2011, 45(16): 6777−6783. [27] Oduor N A, Munga C N, Ong'anda H O, et al. Nutrients and harmful algal blooms in Kenya's coastal and marine waters: a review[J]. Ocean & Coastal Management, 2023, 233: 106454. [28] Bi Zhihao, Wang Wei, Zhao Lei, et al. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: a review[J]. Environmental Research, 2024, 260: 119592. doi: 10.1016/j.envres.2024.119592 [29] Narvarte B C V, Nelson W A, Roleda M Y. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.[J]. Environmental Pollution, 2020, 266: 115344. doi: 10.1016/j.envpol.2020.115344 [30] Banerjee P, Garai P, Saha N C, et al. A critical review on the effect of nitrate pollution in aquatic invertebrates and fish[J]. Water, Air, & Soil Pollution, 2023, 234(6): 333. [31] Pozzer A C, Gómez P A, Weiss J. Volatile organic compounds in aquatic ecosystems–Detection, origin, significance and applications[J]. Science of the Total Environment, 2022, 838: 156155. doi: 10.1016/j.scitotenv.2022.156155 [32] Santos A B, Vieira K R, Nogara G P, et al. Biogeneration of volatile organic compounds by microalgae: occurrence, behavior, ecological implications and industrial applications[M]//Moore J P. Volatile Organic Compounds: Occurrence, Behavior and Ecological Implications. New York: Nova Science Publishers, Inc. , 2016: 1−24. [33] Fink P. Ecological functions of volatile organic compounds in aquatic systems[J]. Marine and Freshwater Behaviour and Physiology, 2007, 40(3): 155−168. doi: 10.1080/10236240701602218 [34] Lawson C A, Seymour J R, Possell M, et al. The volatilomes of Symbiodiniaceae-associated bacteria are influenced by chemicals derived from their algal partner[J]. Frontiers in Marine Science, 2020, 7: 106. doi: 10.3389/fmars.2020.00106 [35] Schulz-Bohm K, Zweers H, De Boer W, et al. A fragrant neighborhood: volatile mediated bacterial interactions in soil[J]. Frontiers in Microbiology, 2015, 6: 1212. [36] 杨王庭, 赵静娴, 徐庆欢, 等. 无磷条件诱导铜绿微囊藻 (Microcystis aeruginosa) 释放挥发性有机化合物对莱茵衣藻 (Chlamydomonas reinhardtii) 的影响[J]. 湖泊科学, 2018, 30(2): 449−457. doi: 10.18307/2018.0216Yang Wangting, Zhao Jingxian, XU Qinghuan, et al. Phosphorus deficiency inducing volatile organic compounds from Microcystis aeruginosa and their effects on Chlamydomonas reinhadtii[J]. Journal of Lake Sciences, 2018, 30(2): 449−457. doi: 10.18307/2018.0216 [37] 左照江. 藻类挥发性有机化合物研究进展[J]. 水生生物学报, 2017, 41(6): 1369−1379.Zuo Zhaojiang. The review of research advances in algal volatile organic compounds[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1369−1379. [38] Abrahamsson K, Choo K S, Pedersén M, et al. Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae[J]. Phytochemistry, 2003, 64(3): 725−734. doi: 10.1016/S0031-9422(03)00419-9 [39] Abis L, Loubet B, Ciuraru R, et al. Reduced microbial diversity induces larger volatile organic compound emissions from soils[J]. Scientific Reports, 2020, 10(1): 6104. doi: 10.1038/s41598-020-63091-8 [40] 王洋, 谢菲, 杜礼泉, 等. 酿酒专用小麦大曲中挥发性风味成分与微生物群落相关性分析[J]. 中国酿造, 2024, 43(2): 71−81.Wang Yang, Xie Fei, Du Liquan, et al. Correlation analysis of volatile flavor components and microbial community in Daqu made by special wheat for brewing[J]. China Brewing, 2024, 43(2): 71−81. [41] 张海燕, 康三江, 张霁红, 等. 苹果酵素发酵过程中微生物群落与风味物质的相关性分析[J]. 中国酿造, 2022, 41(12): 110−119.Zhang Haiyan, Kang Sanjiang, Zhang Jihong, et al. Correlation analysis between microbial community and flavor substance during fermentation process of apple Jiaosu[J]. China Brewing, 2022, 41(12): 110−119. [42] 吴玉玲, 付瑜, 张瑞, 等. 渤、黄海近海水体中芳香族有机化合物的分子识别和风险评估[J]. 海洋环境科学, 2024, 43(6): 898−908.Wu Yuling, Fu Yu, Zhang Rui, et al. Molecular identification and risk assessment of aromatic organic compounds in offshore waters of Bohai and Yellow Seas[J]. Marine Environmental Science, 2024, 43(6): 898−908. [43] Lipsewers Y A, Bale N J, Hopmans E C, et al. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea)[J]. Frontiers in Microbiology, 2014, 5: 472. [44] Petchsomrit A, Chanthathamrongsiri N, Jiangseubchatveera N, et al. Extraction, antioxidant activity, and hydrogel formulation of marine Cladophora glomerata[J]. Algal Research, 2023, 71: 103011. doi: 10.1016/j.algal.2023.103011 [45] Skanda S, Vijayakumar B S. Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp. (SSS-8)[J]. Arabian Journal for Science and Engineering, 2022, 47: 6707−6714. doi: 10.1007/s13369-021-06061-0 [46] Zhao Fuqiang, Wang Ping, Lucardi R D, et al. Natural sources and bioactivities of 2, 4-Di-Tert-Butylphenol and its analogs[J]. Toxins, 2020, 12(1): 35. doi: 10.3390/toxins12010035 [47] Preuss R, Angerer J, Drexler H. Naphthalene—an environmental and occupational toxicant[J]. International Archives of Occupational and Environmental Health, 2003, 76(8): 556−576. doi: 10.1007/s00420-003-0458-1 [48] 王兆琦, 赵珊, 蒋万枫, 等. 顶空气相色谱-质谱检测调和油中各单组分植物油含量[J]. 卫生研究, 2021, 50(5): 799−804.Wang Zhaoqi, Zhao Shan, Jiang Wanfeng, et al. Determination of each single component vegetable oil in blend oil by headspace gas chromatography-mass spectrometry[J]. Journal of Hygiene Research, 2021, 50(5): 799−804. [49] 李美萍, 李蓉, 丁鹏霞, 等. HS-SPME条件优化并结合GC-MS分析新鲜及不同干燥方式香菜的挥发性成分[J]. 食品工业科技, 2019, 40(7): 228−236,247.Li Mei ping, Li Rong, Ding Peng xia, et al. Optimization of HS-SPME condition and analysis of volatile compounds in fresh and different drying coriander by GC-MS[J]. Science and Technology of Food Industry, 2019, 40(7): 228−236,247. [50] Love C R, Arrington E C, Gosselin K M, et al. Microbial production and consumption of hydrocarbons in the global ocean[J]. Nature Microbiology, 2021, 6(4): 489−498. doi: 10.1038/s41564-020-00859-8 [51] Harada N, Hirose Y, Chihong S, et al. A novel characteristic of a phytoplankton as a potential source of straight-chain alkanes[J]. Scientific Reports, 2021, 11(1): 14190. doi: 10.1038/s41598-021-93204-w [52] Liu Jie, Wan Peng, Xie Caifeng, et al. Key aroma-active compounds in brown sugar and their influence on sweetness[J]. Food Chemistry, 2021, 345: 128826. doi: 10.1016/j.foodchem.2020.128826 [53] Wang Xiaojun, Guo Mengyao, Song Huanlu, et al. Characterization of key odor-active compounds in commercial high-salt liquid-state soy sauce by switchable GC/GC× GC–olfactometry–MS and sensory evaluation[J]. Food Chemistry, 2021, 342: 128224. doi: 10.1016/j.foodchem.2020.128224 [54] 李嘉欣, 孟斌斌, 朱凯. 樟树叶精油组成分析及抗氧化活性研究[J]. 林产化学与工业, 2020, 40(1): 84−90. doi: 10.3969/j.issn.0253-2417.2020.01.012Li Jiaxin, Meng Binbin, Zhu Kai. Components and antioxidant activity of camphor leaves essential oil[J]. Chemistry and Industry of Forest Products, 2020, 40(1): 84−90. doi: 10.3969/j.issn.0253-2417.2020.01.012 -