Study on the spatiotemporal variation characteristics of zooplankton community and its key driving factors in Nanji Islands sea area
-
摘要: 为掌握南麂列岛海域浮游动物群落的时空变化特征,分别于2022年11月、2023年5月、2023年9月对南麂列岛海域的水生生物及环境要素进行了3个航次的调查。室内实验结果显示共鉴定出浮游动物93种,其中包括20种浮游幼体,2023.09航次物种数最丰富(63种),2022.11航次物种数最低(45种);其中优势种(Y ≥ 0.02)包括百陶箭虫(Sagitta bedoti)、肥胖软箭虫(Flaccisagitta enflata)、中华哲水蚤(Calanus sinicus)和太平洋纺锤水蚤(Acarta pacifica)等19种。浮游动物的平均丰度为512.84 ind./m3,平均生物量为614.82 mg/m3,存在明显的航次差异,2023.09航次丰度和生物量最高,2022.11航次丰度和生物量最低。浮游动物香农−威尔(Shannon-Wiener)多样性指数(H')、物种均匀度指数(J')和丰富度指数(D)平均值分别为1.64、0.55和2.57。Spearman相关性分析、非度量多维度排序分析和典范对应分析结果表明,盐度、温度、总氮质量浓度、硝酸盐质量浓度和浮游植物丰度是影响南麂列岛海域浮游动物优势种生物量的重要环境因子。Abstract: To understand the spatio-temporal variation characteristics of zooplankton communities in the Nanji Islands sea area, three voyage surveys of aquatic organisms and hydrological factors were conducted in November 2022, May 2023, and September 2023, respectively. Laboratory experimental results showed that a total of 93 species of zooplankton were identified, including 20 species of plankton larvae. The 2023.09 voyage recorded the highest species richness (63 species), while the 2022.11 voyage had the lowest (45 species). Among these, 19 dominant species (Y ≥ 0.02) included Sagitta bedoti, Flaccisagitta enflata, Calanus sinicus, Acartia pacifica, and others. The average abundance of zooplankton was 512.84 ind./m³, and the average biomass was 614.82 mg/m³, with significant differences among the voyages. The 2023.09 voyage had the highest abundance and biomass, while the 2022.11 voyage had the lowest. The average values of the Shannon-Wiener diversity index (H'), species evenness index (J'), and richness index (D) for zooplankton were 1.64, 0.55, and 2.57, respectively. Results from Spearman correlation analysis, non-metric Multidimensional Scaling Analysis and Canonical Correspondence Analysis indicated that salinity, temperature, total nitrogen content, nitrate concentration, and phytoplankton abundance were important environmental factors influencing the biomass of dominant zooplankton species in the Nanji Islands sea area.
-
Key words:
- Nanji Islands /
- zooplankton /
- community structure /
- environmental factors /
- correlation analysis
-
图 8 南麂列岛海域浮游动物优势种与环境因子的典范对应分析
SP1:百陶箭虫;SP2:肥胖软箭虫;SP3:肥胖三角溞;SP4:近缘大眼水蚤;SP5:精致真刺水蚤;SP6:诺氏三角溞;SP7:桡足类无节幼体;SP8:嵊山秀氏水母;SP9:瘦长毛猛水蚤;SP10:太平洋纺锤水蚤;SP11:微刺哲水蚤;SP12:五角水母;SP13:小拟哲水蚤;SP14:小型磷虾;SP15:亚强真哲水蚤;SP16:长尾类溞状幼体;SP17:长尾类幼体;SP18:中华哲水蚤;SP19:锥形宽水蚤
Fig. 8 CCA of dominant zooplankton SPecies and environmental factors in the Nanji Islands sea area
SP1: Sagitta bedoti;SP2:Flaccisagitta enflata;SP3:Evadne tergestina;SP4:Corycaeus affinis;SP5:Euchaeta concinna;SP6:Evadne nordmanni;SP7:Nauplius larva;SP8:Sugiura chengshanense;SP9:Macrosetella gracilis;SP10:Acartia pacifica;SP11:Canthocalanus pauper;SP12:Muggiaea atlantica;SP13:Paracalanus parvus;SP14:Euphausia nana;SP15:Eucalanus subcrassus;SP16:Macrura zoea larva;SP17:Macrura larvae;SP18:Calanus sinicus;SP19:Temora turbinate
表 1 南麂列岛海域环境因子
Tab. 1 Environmental factors in the Nanji Islands sea area
环境因子 2022.11航次 2023.05航次 2023.09航次 水温/(℃) 19.85~20.53 16.3~16.65 28.75~29 盐度 31.15~32.1 30.05~30.3 28.95~29.75 酸碱度(pH) 8.12~8.21 8.37~8.51 8.38~8.4 溶解氧质量浓度/(mg·L−1) 7.27~7.59 9.96~10.39 7.39~7.67 叶绿素a质量浓度/(μg·L−1) 0.33~0.9 1.39~5.26 0.63~2.6 浮游植物丰度/(103ind.·m−3) 27~245 21~260 103~ 49357 化学需氧量/(mg·L−1) 0.44~0.89 0.47~0.71 0.76~0.95 氨氮质量浓度/(mg·L−1) 0.011~0.034 0.011~0.047 0.005~0.083 铜质量浓度/(μg·L−1) 1.11~2.65 0.32~2.22 0.15~1.09 硝酸盐质量浓度/(mg·L−1) 0.083~0.223 0.078~0.17 0.082~0.851 亚硝酸盐质量浓度/(mg·L−1) 0.002~0.008 0.01~0.018 0.007~0.037 无机氮质量浓度/(mg·L−1) 0.1~0.25 0.1~0.17 0.09~0.86 活性磷酸盐质量浓度/(mg·L−1) 0.02~0.03 0.006~0.012 0.003~0.007 石油烃质量浓度/(mg·L−1) 0.007~0.027 0.013~0.07 0.005~0.031 总氮质量浓度/(mg·L−1) 0.12~0.28 0.16~0.19 0.12~0.19 总磷质量浓度/(mg·L−1) 0.06~0.11 0.03~0.06 0.02~0.04 颗粒有机物质量浓度/(mg·L−1) 0.05~0.13 0.06~0.39 0.05~0.1 表 2 南麂列岛海域浮游动物主要优势种及优势度
Tab. 2 The main dominant species and dominance of zooplankton in the Nanji Islands sea area
航次 类别 种名 拉丁学名 优势度 2022.11 毛颚类 百陶箭虫 Sagitta bedoti 0.041 肥胖软箭虫 Flaccisagitta enflata 0.0879 桡足类 精致真刺水蚤 Euchaeta concinna 0.4188 太平洋纺锤水蚤 Acartia pacifica 0.0326 微剌哲水蚤 Canthocalanus pauper 0.0271 中华哲水蚤 Calanus sinicus 0.031 磷虾类 小型磷虾 Euphausia nana 0.0726 浮游幼体 桡足类无节幼体 Nauplius larva 0.0218 长尾类幼体 Macrura larvae 0.0277 2023.05 桡足类 中华哲水蚤 Calanus sinicus 0.7267 近缘大眼水蚤 Corycaeus affinis 0.0451 小拟哲水蚤 Pavacalanus parvus 0.0263 水螅水母 嵊山秀氏水母 Sugiura chengshanense 0.091 毛顎类 百陶箭虫 Sagitta bedoti 0.0292 2023.09 管水母 五角水母 Muggiaea atlantica 0.2562 枝角类 肥胖三角溞 Evadne tergestina 0.1382 诺氏三角溞 Evadne nordmanni 0.0322 毛顎类 肥胖软箭虫 Flaccisagitta enflata 0.1117 桡足类 亚强真哲水蚤 Eucalanus subcrassus 0.0809 表 3 南麂列岛海域浮游动物与环境因子的Spearman相关性分析
Tab. 3 Spearman correlation analysis of zooplankton and environmental factors in the Nanji Islands sea area
环境因子 浮游动物生物量 浮游动物密度 水温 −0.114 (0.523) 0.126 (0.479) 盐度 −0.588 (0.000**) −0.553 (0.001**) 酸碱度(pH) 0.625 (0.000**) 0.515 (0.002**) 溶解氧质量浓度 0.306 (0.078) 0.358 (0.038*) 叶绿素a 0.533 (0.001**) 0.713 (0.000**) 无机氮质量浓度 −0.469 (0.005**) −0.387 (0.024*) 浮游植物丰度 0.113 (0.526) 0.21 (0.233) 总磷质量浓度 −0.493 (0.003**) −0.5 (0.003**) 亚硝酸盐(NO2−)质量浓度 0.622 (0.000**) 0.322 (0.063) 石油烃质量浓度 0.255 (0.146) 0.027 (0.878) 活性磷酸盐质量浓度 −0.549 (0.001**) −0.638 (0.000**) 总氮质量浓度 −0.414 (0.015*) −0.339 (0.050*) 颗粒有机物质量浓度 0.032 (0.856) −0.076 (0.671) 化学需氧量 0.242 (0.168) 0.414 (0.015*) 铜(Cu2+)质量浓度 −0.455 (0.007**) −0.47 (0.005**) 氨氮质量浓度 −0.075 (0.672) 0.083 (0.640) 硝酸盐(NO3−)质量浓度 −0.444 (0.009**) −0.309 (0.076) 注:**、*分别代表小于0.01和小于0.05的显著性水平。 -
[1] 韩增林, 胡伟, 钟敬秋, 等. 基于能值分析的中国海洋生态经济可持续发展评价[J]. 生态学报, 2017, 37(8): 2563−2574.Han Zenglin, Hu Wei, Zhong Jingqiu, et al. Sustainable development of marine eco-economics based on an emergy analysis in China[J]. Acta Ecologica Sinica, 2017, 37(8): 2563−2574. [2] Thorpe R B. We need to talk about the role of zooplankton in marine food webs[J]. Journal of Fish Biology, 2024, 105(2): 444−458. doi: 10.1111/jfb.15773 [3] Uttieri M, Carotenuto Y, Di Capua I, et al. Ecology of marine zooplankton[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1875. doi: 10.3390/jmse11101875 [4] 杨丹, 付全有, 韩正兵, 等. 南极典型海域浮游生物生产力/群落结构对BP/MCP储碳影响及其年代际变率[J]. 海洋学报, 2024, 46(5): 37−56.Yang Dan, Fu Quanyou, Han Zhengbing, et al. Effects of plankton productivity/community structure on BP/MCP carbon storage and their interdecadal variations in a typical Antarctic waters[J]. Haiyang Xuebao, 2024, 46(5): 37−56. [5] 姚莹. “海洋命运共同体”的国际法意涵: 理念创新与制度构建[J]. 当代法学, 2019, 33(5): 138−147. doi: 10.3969/j.issn.1003-4781.2019.05.014Yao Ying. The international law meaning of “marine community of shared future”: concept innovation and system construction[J]. Contemporary Law Review, 2019, 33(5): 138−147. doi: 10.3969/j.issn.1003-4781.2019.05.014 [6] 孙海博, 王小豪, 何苗, 等. 长江如皋段的浮游动物群落结构及其与水环境因素的关系[J]. 湿地科学, 2023, 21(4): 555−563.Sun Haibo, Wang Xiaohao, He Miao, et al. Structure of zooplankton community in Rugao section of Yangtze River and its relationship with water environmental factors[J]. Wetland Science, 2023, 21(4): 555−563. [7] 阙华勇, 陈勇, 张秀梅, 等. 现代海洋牧场建设的现状与发展对策[J]. 中国工程科学, 2016, 18(3): 79−84. doi: 10.3969/j.issn.1009-1742.2016.03.014Que Huayong, Chen Yong, Zhang Xiumei, et al. Modern marine ranching: status and development strategy[J]. Strategic Study of CAE, 2016, 18(3): 79−84. doi: 10.3969/j.issn.1009-1742.2016.03.014 [8] 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133−1140.Yang Hongsheng. Construction of marine ranching in China: reviews and prospects[J]. Journal of Fisheries of China, 2016, 40(7): 1133−1140. [9] 伍家祺, 王利伟, 陈柳云. 海洋牧场建设类型比较及发展对策研究——以广东、辽宁、山东为例[J]. 河北渔业, 2024(2): 42−46. doi: 10.3969/j.issn.1004-6755.2024.02.010Wu Jiaqi, Wang Liwei, Chen Liuyun. Comparison of construction types and development countermeasures of marine pasture—Take Guangdong, Liaoning and Shandong as examples[J]. Hebei Fisheries, 2024(2): 42−46. doi: 10.3969/j.issn.1004-6755.2024.02.010 [10] 李梦迪, 李娇, 薛月光, 等. 基于灰色-马尔科夫模型评估石雀滩海洋牧场岩礁鱼类碳储量[J]. 渔业科学进展, 2024, 45(1): 14−22.Li Mengdi, Li Jiao, Xue Yueguang, et al. Assessment of carbon storage of reef fish in Shique beach marine ranching based on Grey-Markov model[J]. Progress in Fishery Sciences, 2024, 45(1): 14−22. [11] 纪焕红, 叶属峰, 刘星, 等. 南麂列岛海洋自然保护区浮游动物的物种组成及其多样性[J]. 生物多样性, 2006, 14(3): 206−215. doi: 10.3321/j.issn:1005-0094.2006.03.003Ji Huanhong, Ye Shufeng, Liu Xing, et al. The species composition and diversity of zooplankton in Nanji Islands national nature reserve[J]. Biodiversity Science, 2006, 14(3): 206−215. doi: 10.3321/j.issn:1005-0094.2006.03.003 [12] 王春生, 杨关铭, 朱根海, 等. 南麂列岛附近海域浮游动物的分布及其与浮游藻类和营养盐的关系[J]. 东海海洋, 1998, 16(2): 41−48.Wang Chunsheng, Yang Guanming, Zhu Genhai, et al. Distribution of zooplankton and its relation to planktonic algae and nutrients in the waters near Nanji Islands[J]. Donghai Marine Science, 1998, 16(2): 41−48. [13] 张晓辉, 周燕, 龙华, 等. 南麂列岛海洋保护区浮游动物调查[J]. 水利渔业, 2007, 27(1): 59−61. doi: 10.3969/j.issn.1003-1278.2007.01.027Zhang Xiaohui, Zhou Yan, Long Hua, et al. Zooplankton in the reserve of Nanlu Islands[J]. Reservoir Fisheries, 2007, 27(1): 59−61. doi: 10.3969/j.issn.1003-1278.2007.01.027 [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.3-2007, 海洋监测规范 第3部分: 样品采集、贮存与运输[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB 17378.3-2007, The specification for marine monitoring-part 3: sample collection, storage and transportation[S]. Beijing: Standards Press of China, 2008. [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.4—2007, 海洋调查规范 第4部分: 海水化学要素调查[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.4—2007, Specifications for oceanographic survey-part 4: survey of chemical parameters in sea water[S]. Beijing: Standards Press of China, 2008. [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6—2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6—2007, Specifications for oceanographic survey-part 6: marine biological survey[S]. Beijing: Standards Press of China, 2008. [17] Pianka E R. Ecology of the agamid lizard Amphibolurus isolepis in Western Australia[J]. Copeia, 1971, 1971(3): 527−536. doi: 10.2307/1442450 [18] Zhang Yanrong, Yin Zengqiang, Wang Yan, et al. Zooplankton structure and ecological niche differentiation of dominant species in Tahe Bay, Lushun, China[J]. Sustainability, 2024, 16(19): 8590. doi: 10.3390/su16198590 [19] Burks A W. The mathematical theory of communication[J]. The Philosophical Review, 1951, 60(3): 398−400. doi: 10.2307/2181879 [20] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379−423. doi: 10.1002/j.1538-7305.1948.tb01338.x [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.7—2007, 海洋监测规范 第7部分: 近海污染生态调查和生物监测[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB 17378.7—2007, The specification for marine monitoring-part 7: ecological survey for offshore pollution and biological monitoring[S]. Beijing: Standards Press of China, 2008. [22] 姚瑞. 基于高通量DNA测序的南麂列岛海洋底栖环节动物多样性分析[D]. 舟山: 浙江海洋大学, 2018.Yao Rui. Analysis of marine benthic annelid diversity in Nanji Islands based on high-throughput DNA sequencing[D]. Zhoushan: Zhejiang Ocean University, 2018. [23] 李扬, 李欢, 吕颂辉, 等. 南麂列岛海洋自然保护区浮游植物的种类多样性及其生态分布[J]. 水生生物学报, 2010, 34(3): 618−628. doi: 10.3724/issn1000-3207-2010-3-618-gLi Yang, Li Huan, Lü Songhui, et al. Species diversity and distribution of phytoplankton in Nanji Islands national nature reserve[J]. Acta Hydrobiologica Sinica, 2010, 34(3): 618−628. doi: 10.3724/issn1000-3207-2010-3-618-g [24] 战庆, 王张华, 赵宝成, 等. 末次冰消期以来长江口沉积环境演化及沿岸流变化[J]. 地球科学, 2020, 45(7): 2697−2708.Zhan Qing, Wang Zhanghua, Zhao Baocheng, et al. Sedimentary evolution and coastal currents variations of the Yangtze River Mouth (East China Sea) since Last Deglaciation[J]. Earth Science, 2020, 45(7): 2697−2708. [25] 李汝伟. 浙江近海海域超微型浮游生物类群的生态研究[D]. 舟山: 浙江海洋大学, 2017.Li Ruwei. Ecological studies on picoplankton in coastal waters of Zhejiang[D]. Zhoushan: Zhejiang Ocean University, 2017. [26] 孙鲁峰, 柯昶, 徐兆礼, 等. 上升流和水团对浙江中部近海浮游动物生态类群分布的影响[J]. 生态学报, 2013, 33(6): 1811−1821. doi: 10.5846/stxb201203090320Sun Lufeng, Ke Chang, Xu Zhaoli, et al. The influence of upwelling and water mass on the ecological group distribution of zooplankton in Zhejiang coastal waters[J]. Acta Ecologica Sinica, 2013, 33(6): 1811−1821. doi: 10.5846/stxb201203090320 [27] Aggio C E G, Oliveira F R, Progênio M, et al. The zooplankton of tropical streams: is it determinism or stochasticity that drives the spatial and temporal patterns in community structure?[J]. Community Ecology, 2022, 23(2): 219−229. doi: 10.1007/s42974-022-00099-2 [28] 吴丽航, 王健鑫, 许永久, 等. 长江口及邻近海域冬、夏季浮游动物群落结构的季节差异分析[J]. 浙江海洋大学学报(自然科学版), 2022, 41(3): 183−191.Wu Lihang, Wang Jianxin, Xu Yongjiu, et al. Seasonal difference analysis of zooplankton community structure in winter and summer in the Yangtze Estuary and adjacent waters[J]. Journal of Zhejiang Ocean University (Natural Science), 2022, 41(3): 183−191. [29] 王亮根, 李亚芳, 杜飞雁, 等. 大亚湾人工鱼礁区和岛礁区浮游动物群落特征及对仔稚鱼的影响[J]. 南方水产科学, 2018, 14(2): 41−50. doi: 10.3969/j.issn.2095-0780.2018.02.006Wang Lianggen, Li Yafang, Du Feiyan, et al. Zooplankton community characteristics and impact on ichthyoplankton in artificial reefs and island reefs of Daya Bay[J]. South China Fisheries Science, 2018, 14(2): 41−50. doi: 10.3969/j.issn.2095-0780.2018.02.006 [30] 沈小飞, 王咏雪, 陈利, 等. 乐清湾海域浮游动物群落结构时空变化研究[J]. 安徽农业科学, 2024, 52(10): 109−112,119. doi: 10.3969/j.issn.0517-6611.2024.10.023Shen Xiaofei, Wang Yongxue, Chen Li, et al. Spatial and temporal variations of the zooplankton community structure in the Yueqing Bay waters[J]. Journal of Anhui Agricultural Sciences, 2024, 52(10): 109−112,119. doi: 10.3969/j.issn.0517-6611.2024.10.023 [31] 张泽凌, 蒋霞敏, 夏明月, 等. 渔山列岛浮游动物的群落结构特征分析[J]. 生物学杂志, 2014, 31(1): 51−55. doi: 10.3969/j.issn.2095-1736.2014.01.051Zhang Zeling, Jiang Xiamin, Xia Mingyue, et al. Analysis of community structure of zooplankton in Yushan Islands[J]. Journal of Biology, 2014, 31(1): 51−55. doi: 10.3969/j.issn.2095-1736.2014.01.051 [32] 边佳胤, 王平波, 沈丹迪, 等. 2018年春、夏季浙北海域大中型浮游动物生态特征及其与环境因子的关系[J]. 海洋湖沼通报, 2023, 45(5): 152−162.Bian Jiayin, Wang Pingbo, Shen Dandi, et al. Ecological characteristics of macro- and meso-zooplankton in north coastal areas of Zhejiang Province in spring and summer, 2018, and their relationship with environmental factors[J]. Transactions of Oceanology and Limnology, 2023, 45(5): 152−162. [33] Devreker D, Souissi S, Seuront L. Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel[J]. Journal of Experimental Marine Biology and Ecology, 2005, 318(2): 145−162. doi: 10.1016/j.jembe.2004.12.011 [34] Işkın U, Filiz N, Cao Yu, et al. Impact of nutrients, temperatures, and a heat wave on zooplankton community structure: an experimental approach[J]. Water, 2020, 12(12): 3416. doi: 10.3390/w12123416 [35] 宋晨, 孟周, 王晓波, 等. 2019-2020年夏季舟山海域浮游动物优势种生态位及其生态分化[J]. 海洋学报, 2022, 44(10): 127−139. doi: 10.12284/j.issn.0253-4193.2022.10.hyxb202210012Song Chen, Meng Zhou, Wang Xiaobo, et al. Ecological niches and ecological differentiation of dominant zooplankton species in the Zhoushan waters in summer 2019−2020[J]. Haiyang Xuebao, 2022, 44(10): 127−139. doi: 10.12284/j.issn.0253-4193.2022.10.hyxb202210012 [36] 胡亚丽, 王健鑫, 许永久, 等. 2016和2020年长江口及邻近海域浮游动物群落结构夏季年际变化及与环境因子的关系[J]. 浙江海洋大学学报(自然科学版), 2022, 41(3): 192−201.Hu Yali, Wang Jianxin, Xu Yongjiu, et al. Summer interannual changes of zooplankton community structure in the Yangtze River estuary and adjacent waters in 2016 and 2020 and its relationship with environmental factors[J]. Journal of Zhejiang Ocean University (Natural Science), 2022, 41(3): 192−201. [37] 戴美霞, 朱艺峰, 林霞, 等. 象山港浮游动物β多样性及其成分变化的环境因子解释[J]. 生态学报, 2017, 37(17): 5780−5789.Dai Meixia, Zhu Yifeng, Lin Xia, et al. Interpretation of environmental factors affecting zooplanktonic beta diversity and its components in Xiangshan Bay[J]. Acta Ecologica Sinica, 2017, 37(17): 5780−5789. [38] Zadereev E, Drobotov A, Anishchenko O, et al. The structuring effects of salinity and nutrient status on zooplankton communities and trophic structure in Siberian lakes[J]. Water, 2022, 14(9): 1468. doi: 10.3390/w14091468 [39] 杨杰青, 陈渊戈, 张冬融, 等. 春季中华哲水蚤在不同海湾或河口对环境的适应性[J]. 应用海洋学学报, 2023, 42(3): 460−468.Yang Jieqing, Chen Yuange, Zhang Dongrong, et al. Adaption of Calanus sinicus to the environment factors in bays and estuaries in spring season[J]. Journal of Applied Oceanography, 2023, 42(3): 460−468. [40] 刘镇盛. 长江口及其邻近海域浮游动物群落结构和多样性研究[D]. 青岛: 中国海洋大学, 2012.Liu Zhensheng. Community structure and biodiversity of zooplankton in the Changjiang estuary and its adjacent waters[D]. Qingdao: Ocean University of China, 2012. [41] 俞存根, 陈小庆, 胡颢琰, 等. 舟山渔场及邻近海域浮游动物种类组成及群落结构特征[J]. 水生生物学报, 2011, 35(1): 183−193.Yu Cungen, Chen Xiaoqing, Hu Haoyan, et al. Species composition and community structure characteristics of zooplankton in the Zhoushan fishing ground and its adjacent area[J]. Acta Hydrobiologica Sinica, 2011, 35(1): 183−193. [42] Choo S, Kwak M T, Cho Y K, et al. Effects of water masses on the zooplankton community structure in the northern East China Sea during the East Asian Summer Monsoon in 2020[J]. Ecological Indicators, 2023, 154: 110847. doi: 10.1016/j.ecolind.2023.110847 [43] 张亮, 张绍萍, 陶卉卉, 等. 胶州湾大沽河口邻近海域夏、秋季大型浮游动物群落结构特征[J]. 河北大学学报(自然科学版), 2024, 44(3): 312−321.Zhang Liang, Zhang Shaoping, Tao Huihui, et al. Community structure characteristics of macrozooplankton in the sea area near Dagu River Estuary of Jiaozhou Bay in summer and autumn[J]. Journal of Hebei University (Natural Science Edition), 2024, 44(3): 312−321. [44] 索安宁, 李汉英, 岳维忠, 等. 渔业资源养护型海洋牧场效果模糊综合评估—以珠江口庙湾海洋牧场为例[J]. 水产学报, 2024, 42(3): 1−14. (查阅网上资料, 未找到本条文献卷期页码信息, 请确认)Suo Anning, Li Hanying, Yue Weizhong, et al. Astudy on fuzzy comprehensive evaluation of marine ranching for fishery resources conservation in estuary of Pearl River[J]. Journal of Fisheries of China, 2024, 42(3): 1−14. [45] 尹增强, 章守宇. 东海区资源保护型人工鱼礁生态效果评价体系的初步研究[J]. 海洋渔业, 2012, 34(1): 23−31. doi: 10.3969/j.issn.1004-2490.2012.01.004Yin Zengqiang, Zhang Shouyu. The ecological effect evaluation system of protective artificial reef in East China Sea[J]. Marine Fisheries, 2012, 34(1): 23−31. doi: 10.3969/j.issn.1004-2490.2012.01.004 [46] 杨阳阳. 长江河口典型浮游动物群落时空变动及其主要驱动因素研究[D]. 上海: 上海海洋大学, 2022.Yang Yangyang. Temporal and Spatial Variation and the main driving forces of Zooplankton Community in the Yangtze River Estuary[D]. Shanghai: Shanghai Ocean University, 2022. [47] 李开枝, 柯志新, 李刚, 等. 热带东北印度洋海域管水母类的群落结构特征[J]. 海洋学报, 2014, 36(8): 72−81. doi: 10.3969/j.issn.0253-4193.2014.08.008Li Kaizhi, Ke Zhixin, Li Gang, et al. Community structure of siphonophores in the tropical northeast Indian Ocean[J]. Haiyang Xuebao, 2014, 36(8): 72−81. doi: 10.3969/j.issn.0253-4193.2014.08.008 [48] 张芳, 杨波, 张光涛. 胶州湾水母类生态研究Ⅱ. 优势种丰度的时空分布[J]. 海洋与湖沼, 2005, 36(6): 518−526. doi: 10.3321/j.issn:0029-814X.2005.06.005Zhang Fang, Yang Bo, Zhang Guangtao. Ecology of medusae in Jiaozhou Bay Ⅱ. Spatial and temporal distribution of dominant species[J]. Oceanologia et Limnologia Sinica, 2005, 36(6): 518−526. doi: 10.3321/j.issn:0029-814X.2005.06.005 [49] 徐晓群, 曾江宁, 陈全震, 等. 浙江三门湾浮游动物优势种空间生态位[J]. 应用生态学报, 2013, 24(3): 818−824.Xu Xiaoqun, Zeng Jiangning, Chen Quanzhen, et al. Spatial niches of dominant zooplankton species in Sanmen Bay, Zhejiang Province of East China[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 818−824. [50] 徐佳奕, 徐兆礼. 三沙湾浮游动物生态类群演替特征[J]. 生态学报, 2013, 33(5): 1413−1424. doi: 10.5846/stxb201207241050Xu Jiayi, Xu Zhaoli. Seasonal succession of zooplankton in Sansha Bay, Fujian[J]. Acta Ecologica Sinica, 2013, 33(5): 1413−1424. doi: 10.5846/stxb201207241050 [51] 谢福武, 谢海群, 王少露, 等. 海南新村潟湖海草床区浮游动物粒径结构特征与环境因子相关性[J]. 广东海洋大学学报, 2024, 44(3): 64−73. doi: 10.3969/j.issn.1673-9159.2024.03.008Xie Fuwu, Xie Haiqun, Wang Shaolu, et al. Characteristics of Zooplankton size structure and its relationship with environmental factors on seagrass beds of Xincun Lagoon, Hainan[J]. Journal of Guangdong Ocean University, 2024, 44(3): 64−73. doi: 10.3969/j.issn.1673-9159.2024.03.008 [52] 王雨航, 李尚清, 叶深, 等. 瓯江口海域浮游动物群落结构与环境因子的相关性分析[J]. 海洋学报, 2024, 46(3): 98−110.Wang Yuhang, Li Shangqing, Ye Shen, et al. Correlation analysis of zooplankton community structure and environmental factors in the Oujiang River Estuary[J]. Haiyang Xuebao, 2024, 46(3): 98−110. [53] 戴希贤, 马旭洲, 张文博, 等. 盆地环境条件下幼蟹养殖池塘浮游动物群落结构及水质评价[J]. 安徽农业大学学报, 2023, 50(6): 991−999.Dai Xixian, Ma Xuzhou, Zhang Wenbo, et al. Evaluation of zooplankton community structure and water quality in juvenile crab culture ponds under basin environmental conditions[J]. Journal of Anhui Agricultural University, 2023, 50(6): 991−999. [54] 魏朝军, 邱鹏飞, 王府臣, 等. 天津于桥水库浮游动物群落变化及其与束丝藻消长的关系[J]. 水生态学杂志, 2024, 45(6): 134−144.Wei Chaojun, Qiu Pengfei, Wang Fuchen, et al. Zooplankton community dynamics and its relationship with the growth of Aphanizomenon sp. in Yuqiao Reservoir, Tianjin[J]. Journal of Hydroecology, 2024, 45(6): 134−144. [55] Dagg M J. Ingestion of phytoplankton by the micro- and mesozooplankton communities in a productive subtropical estuary[J]. Journal of Plankton Research, 1995, 17(4): 845−857. doi: 10.1093/plankt/17.4.845 [56] 张荣华. 用于厄尔尼诺-南方涛动(ENSO)研究的海气耦合模式综述: 中间型和混合型模式[J]. 海洋与湖沼, 2024, 55(1): 1−23.Zhang Ronghua. A review of progress in coupled ocean-atmosphere model developments for ENSO studies: intermediate coupled models and hybrid coupled models[J]. Oceanologia et Limnologia Sinica, 2024, 55(1): 1−23. [57] 任爽宁, 张硕, 高世科, 等. 海州湾浮游桡足类丰度的季节变化及其与环境因子的相关性[J]. 海洋学报, 2024, 46(3): 89−97.Ren Shuangning, Zhang Shuo, Gao Shike, et al. Seasonal variations of planktonic copepods abundance and their relationship with environmental factors in the Haizhou Bay[J]. Haiyang Xuebao, 2024, 46(3): 89−97. [58] Hossain M S, Ullah M A, Sultana S, et al. Exploring phyto- and zooplankton community structure, spatial variation, and driving forces shaping the community from a large-scale freshwater dominated estuary[J]. Environmental Research Communications, 2024, 6(11): 115012. doi: 10.1088/2515-7620/ad8f1f -