Application of Comsol multiphase flow model in the simulation of the submarine landslide evolution
-
摘要: 海底滑坡作为一种常见的自然灾害,对海洋工程危害巨大,同时海底滑坡引发的次生灾害也会对沿海地区造成威胁,因此对海底滑坡的运动过程展开研究至关重要。本文运用Comsol多相流数值仿真软件系统建立了海底滑坡多相流数值模型,同时选用Herschel-Bulkley-Papanastasiou(HBP)黏性流体模型模拟滑坡体,采用经典牛顿流体模型模拟周围水体。为了验证数值模型的准确性,将数值模型结果与文献中的模型试验结果进行对比分析,本文所建立的Comsol模拟结果与文献结果数据吻合,说明该模型具备一定的准确性,可以用于海底滑坡研究及预测。同时为了进一步展开对海底滑坡的研究分析,本文对朱家尖海底滑坡进行模拟,预测了滑坡体前缘速度以及滑移距离。本研究可以为海底滑坡预测与防治工作提供参考。Abstract: Submarine landslide, as a prevalent natural disaster, brings substantial hazards to ocean engineering. Moreover, the secondary disasters triggered by submarine landslides will exert a significant influence on the social and economic development in coastal areas. Consequently, researching the motion process of submarine landslides is of great significance. In this paper, a multiphase flow numerical model of submarine landslides is established with Comsol. The Herschel-Bulkley-Papanastasiou (HBP) viscous fluid model is utilized to simulate the landslide, while the surrounding water is modeled by the classical Newtonian fluid model. The numerical model results are compared with the experimental data from the literature to verify the accuracy of the numerical model. It is shown that the Comsol simulation results are consistent with the data in the literature, which indicates that this model has a certain degree of accuracy and can be used for the study and prediction of submarine landslides. Furthermore, in order to further conduct research and analysis on submarine landslides, this paper simulates the Zhujiajian submarine landslide and predicts the front-side velocity and sliding distance of the landslide mass. This study can serve as a reference for the prediction and prevention of submarine landslides.
-
Key words:
- submarine landslide /
- multiphase flow /
- evolution process /
- Comsol model
-
图 2 滑坡体构型及水剖面图
a. 0.4 s时坡体构型及水剖面图,b. 0.8 s时坡体构型及水剖面图,c. 1.6 s时坡体构型及水剖面图,d. 3.2 s时坡体构型及水剖面图
Fig. 2 Slope configuration and water profile
a. Slope configuration and water profile at 0.4 s, b. slope configuration and water profile at 0.8 s, c. slope configuration and water profile at 1.6 s, d. slope configuration and water profile at.3.2 s
图 3 滑坡体运动过程中的速度分布
a. 0.4 s时刻速度云图,b. 0.8 s时刻速度云图,c. 1.6 s时刻速度云图,d. 3.2 s时刻速度云图
Fig. 3 Velocity distribution during the submarine landslide propagation
a. Time velocity cloud image at 0.4 s, b. time velocity cloud image at 0.8 s, c. time velocity cloud image at 1.6 s, d. time velocity cloud image at 3.2 s
图 7 滑坡体前缘速度时程曲线
a. 不同屈服应力下前缘速度时程曲线,b. 不同动力黏度下前缘速度时程曲线,c. 不同平滑度参数下前缘速度时程曲线
Fig. 7 Time history curve of the landslide front velocity
a. Time history curves of landslide front velocity under different yield stress, b. time history curves of landslide front velocity under different dynamic viscosity, c. time history curve of landslide front velocity with different smoothness parameters
图 11 朱家尖海底滑坡速度分布
a. 0 s时刻速度云图,b. 21 s时刻速度云图,c. 30 s时刻速度云图,d. 40 s时刻速度云图, e. 80 s时刻速度云图
Fig. 11 Velocity distribution of the Zhujiajian landslide
a. Velocity distribution at 0 s , b. velocity distribution at 21 s, c. velocity distribution at 30 s, d. velocity distribution at 40 s, e. velocity distribution at 80 s
表 1 海底滑坡模型试验模拟参数[23]
Tab. 1 Simulation parameters of submarine landslide test[23]
参数名称 符号/(单位) 数值 滑坡体密度 ρs/(kg/m3) 1 950 滑坡体黏度系数 μp/(Pa∙s) 0.15 滑坡体屈服应力 τy/(Pa) 750 平滑度参数 mp/(s) 0.02 水的密度 ρw/(kg/m3) 1 000 水的黏度系数 μw/(Pa∙s) 1.0×10-3 重力加速度 g/(m/s2) 9.8 -
[1] Heller V, Spinneken J. Improved landslide-tsunami prediction: effects of block model parameters and slide model[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1489−1507. [2] Hsu S K, Kuo J, Lo C L, et al. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(6): 767−772. [3] Matsumoto H, Baba T, Kashiwase K, et al. Discovery of submarine landslide evidence due to the 2009 Suruga Bay earthquake[C]//5th International Symposium on Submarine Mass Movements and Their Consequences. Dordrecht: Springer, 2012: 549-559. [4] Sun Yongfu, Huang Bolin. A Potential Tsunami impact assessment of submarine landslide at Baiyun Depression in Northern South China Sea[J]. Geoenvironmental Disasters, 2014, 1(1): 7. [5] Ataie-Ashtiani B, Najafi-Jilani A. Laboratory investigations on impulsive waves caused by underwater landslide[J]. Coastal Engineering, 2008, 55(12): 989−1004. doi: 10.1016/j.coastaleng.2008.03.003 [6] Lindstrøm E K, Pedersen G K, Jensen A, et al. Experiments on slide generated waves in a 1: 500 scale fjord model[J]. Coastal Engineering, 2014, 92(): 12−23. doi: 10.1016/j.coastaleng.2014.06.010 [7] 孙永福, 黄波林, 赵永波. 基于物理试验的海底滑坡涌浪研究[J]. 水文地质工程地质, 2018, 45(1): 116−122.Sun Yongfu, Huang Bolin, Zhao Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 116−122. [8] 蔡月楼. 地震触发海底滑坡运移特征的物理模型试验研究[D]. 长春: 吉林大学, 2020.Cai Yuelou. The physical model test study on the motion characteristics of submarine landslide triggered by earthquake[D]. Changchun: Jilin University, 2020. [9] Capone T, Panizzo A, Monaghan J J. SPH modelling of water waves generated by submarine landslides[J]. Journal of Hydraulic Research, 2010, 48(S1): 80−84. [10] Qiu Liuchao, Jin Feng, Lin Pengzhi, et al. Numerical simulation of submarine landslide tsunamis using particle based methods[J]. Journal of Hydrodynamics, 2017, 29(4): 542−551. [11] 缪成章. 海底滑坡及其对海底管线的影响[D]. 杭州: 浙江大学, 2007.Miao Chengzhang. Submarine slide and its influence on the submarine pipeline[D]. Hangzhou: Zhejiang University, 2007. [12] Mitsotakis D E. Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves[J]. Mathematics and Computers in Simulation, 2009, 80(4): 860−873. doi: 10.1016/j.matcom.2009.08.029 [13] Xie Qiuhong, Xu Qiang, Xiu Zongxiang, et al. Convenient method for large-deformation finite-element simulation of submarine landslides considering shear softening and rate correlation effects[J]. Journal of Marine Science and Engineering, 2024, 12(1): 81. [14] Cremonesi M, Frangi A, Perego U. A Lagrangian finite element approach for the simulation of water-waves induced by landslides[J]. Computers & Structures, 2011, 89(11/12): 1086−1093. [15] Zhu Hongxia, Randolph M F. Large deformation finite-element analysis of submarine landslide interaction with embedded pipelines[J]. International Journal of Geomechanics, 2010, 10(4): 145−152. [16] Dong Youkou, Wang Dong, Randolph M F. Runout of submarine landslide simulated with material point method[J]. Journal of Hydrodynamics, 2017, 29(3): 438−444. [17] 解秋红, 修宗祥, 刘乐军, 等. 苏门答腊岛西北海域大型海底滑坡过程反分析[J]. 工程力学, 2016, 33(12): 241−247,256. doi: 10.6052/j.issn.1000-4750.2015.05.0376Xie Qiuhong, Xiu Zongxiang, Liu Lejun, et al. Back calculation of submarine landslide identified in the northwest coast of Sumatra[J]. Engineering Mechanics, 2016, 33(12): 241−247,256. doi: 10.6052/j.issn.1000-4750.2015.05.0376 [18] 王忠涛, 王寒阳, 张宇. 海底滑坡对置于海床表面管线作用力的CFD模拟[J]. 海洋学报, 2016, 38(9): 110−117. doi: 10.3969/j.issn.0253-4193.2016.09.011Wang Zhongtao, Wang Hanyang, Zhang Yu. CFD numerical analysis of submarine landslides impact on laid-on-seafloor pipeline[J]. Haiyang Xuebao, 2016, 38(9): 110−117. doi: 10.3969/j.issn.0253-4193.2016.09.011 [19] 张海. 丝网传感器的气液两相流测量特性仿真与实验研究[D]. 天津: 天津大学, 2021.Zhang Hai. Numerical and experimental investigation on measurement characteristics of wire mesh sensor for gas-liquid flow[D]. Tianjin: Tianjin University, 2021. [20] Falk R S, Glowinski R, Lions J L, et al. Numerical analysis of variational inequalities[J]. Mathematics of Computation, 1981, 39(160): 742−743. (查阅网上资料, 未找到本条文献信息, 请确认) [21] 韩征, 粟滨, 李艳鸽, 等. 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477−485,510.Han Zheng, Su Bin, Li Yange, et al. Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model[J]. Rock and Soil Mechanics, 2019, 40(S1): 477−485,510. [22] Rzadkiewicz S A, Mariotti C, Heinrich P. Numerical simulation of submarine landslides and their hydraulic effects[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1997, 123(4): 149−157. [23] Ataie-Ashtiani B, Shobeyri G. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2008, 56(2): 209−232. [24] 窦玉喆. 海底滑坡多因素触发与致灾机制[D]. 杭州: 浙江大学, 2023.Dou Yuzhe. Multifactorial triggering and mechanisms of submarine landslides and disaster effects[D]. Hangzhou: Zhejiang University, 2023. [25] 来向华, 叶银灿, 谢钦春. 浙江东部潮汐通道地区水下滑坡的类型及特征[J]. 东海海洋, 2000, 18(4): 1−8.Lai Xianghua, Ye Yincan, Xie Qinchun. Classification and features of subaqueous landslide in the tidal channel region off Zhejiang Province[J]. Donghai Marine Science, 2000, 18(4): 1−8. [26] 单治钢, 高上, 孙淼军, 等. 波浪作用下近海滑坡机制模型试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 541−552.Shan Zhigang, Gao Shang, Sun Miaojun, et al. Physical model tests and numerical simulations to determine mechanism of offshore submarine landslides under effect of sea waves[J]. Rock and Soil Mechanics, 2022, 43(S2): 541−552. [27] 陈雨雪. 近海海底滑坡灾变机理与演化过程模拟方法[D]. 济南: 山东大学, 2022.Chen Yuxue. Disaster mechanism and evolution process simulation method of offshore submarine landslide[D]. Jinan: Shandong University, 2022. -