Simulation and projection of Arctic snow ice by the EC-Earth3 climate model
-
摘要: 雪冰是雪转化为海冰的产物,对北极海冰结构有重要作用。研究雪冰的时空变化能够深度揭示“雪−冰”转化过程的细节,并帮助理解海冰的演变规律及极地气候变化。本文基于EC-Earth3模式,分析了历史情景模拟实验(1990−2014年)和共享社会经济路径SSP245实验(2015−2100年)中的雪冰及其影响因素的变化。通过集合平均、回归分析、Mann-Kendall趋势检验等统计方法,研究了雪冰生长量在历史时期和未来时期的时空演变过程。与美国国家冰雪数据中心的卫星观测海冰密集度数据对比表明,EC-Earth3模式较好地重建了历史时期海冰演变,为预测未来海冰变化提供了信心。分析显示,雪冰主要在冬季和春季生成,分布在戴维斯海峡、北欧海及巴伦支海北部海域。历史时期雪冰生长量全北极平均减少趋势为7.4 × 108 kg/a;弗拉姆海峡等地区雪冰在春季和冬季年变化呈现约1 kg/m2·a的增加趋势;雪冰占冰厚的比例最高在格陵兰岛东南侧海域,平均约为2%,降雪降雨的增加以及温度升高是促进雪冰生成的重要因素。未来预估显示,雪冰生成仍主要集中在春季和冬季,雪冰生长量全北极平均将减少2.6 × 108 kg/a;受降水增加和温度升高影响,研究区域3月份的雪冰年变化增加趋势最大呈0.7 kg/m2·a,雪冰占冰厚的比例逐年有所增加。未来情景实验结果分析对于北极航道开发利用和破冰船能力设计都具有重要的科学参考价值。
-
关键词:
- 北极海冰 /
- 雪冰演变 /
- EC-Earth3模式 /
- 历史时期 /
- 未来情景
Abstract: Snow ice is the product of the transformation from snow into sea ice, which plays an important role in the change of sea ice structure. Studying the spatial and temporal variations of snow ice can provide deep insights into the “snow-ice” transformation process and help understand the evolution of sea ice and polar climate changes. This paper utilizes the EC-Earth3 model to analyze snow ice and its influencing factors in both historical simulations (1990−2014) and Shared Socioeconomic Pathways SSP245 projections (2015−2100). The spatiotemporal evolution of snow ice growth in historical and future periods was investigated by statistical methods such as ensemble averaging, regression analysis, and Mann-Kendall trend test. Compared with the satellite observation sea ice density data of the National Ice and Snow Data Center, the results indicate that the EC-Earth3 model performs well in reconstructing the observed sea ice, and hence provides confidence in projecting the future ice variation. Snow ice primarily forms in winter and spring, with distribution in the Davis Strait, the Nordic Seas, and the northern Barents Sea. The average decrease trend of snow ice growth is 7.4 × 108 kg/a; the change of the average sea ice outer edge line is about 1 kg/m2 in spring and winter; the highest proportion of snow ice is in the southeast of Greenland with an average of about 2%. Increased snowfall, rainfall and rising temperatures are important factors affecting snow ice formation. Future projections suggest that the generation of snow ice is still mainly concentrated in spring and winter, and the total amount of snow ice growth will decrease by 2.6 × 108 kg/a on average; due to the increase of precipitation and temperature increase, the maximum increase trend of snow ice annual in March in the study area is 0.7 kg/m2, and the proportion of snow ice in ice thickness increases year by year. The analysis of future scenario experiment results has important scientific reference value for the development and utilization of Arctic waterway and the design of icebreaker capacity.-
Key words:
- Arctic sea ice /
- snow ice evolution /
- EC-Earth3 model /
- historical period /
- future scenario
-
图 1 北极地区海冰范围月平均变化的历史时期EC-Earth3、NSIDC对比(a)和全时期EC-Earth3模拟(b)
图a中蓝线为EC-Earth3,红线为NSIDC,虚线为线性回归;图b中红线为历史时期,蓝线为未来时期,虚线为线性回归
Fig. 1 Monthly mean change of Arctic sea ice extent compared by EC-Earth3 and NSIDC data in historical period (a), and simulated by EC-Earth3 in the entire period (b)
In figure a, blue line is EC-Earth3, red line is NSIDC and dashed line is linear regression. In figure b, red line is historical period, blue line is future period and dashed line is linear regression
图 2 历史时期模式的月平均海冰密集度模拟情况
EC-Earth3模拟(a),EC-Earth3与NSIDC数据的差异(b);黑色线和蓝色线分别为 EC-Earth3 与 NSIDC 的海冰外缘线
Fig. 2 Simulations of monthly sea ice concentration for model during the historical period
EC-Earth3 simulation (a), differences between EC-Earth3 and NSIDC data (b). The black line and blue line are the sea ice edges of EC-Earth3 and NSIDC
图 6 研究区域雪冰生长厚度(a)、雪冰月生长总质量(b)、平均海冰厚度(c)和雪冰厚度与冰厚之比(d)的时间序列
红线为历史时期,蓝线为未来时期
Fig. 6 Time series of snow ice growth thickness (a), total snow ice growth mass (b), average sea ice thickness (c), and ratio of snow ice thickness to ice thickness (d) in the study area
The red line is the historical period, and the blue line is the future period
图 11 降雪量在历史时期的平均分布(a)、年变化趋势(b)和在未来时期的平均分布(c)、年变化趋势(d)
阴影区域代表通过 99% 的 M-K 显著性检验
Fig. 11 Of snowfall, average distribution (a) and annual variation trends (b) in historical periods, and average distribution (c) and annual variations trends (d) in future periods
The shaded areas represent passing 99% M-K significance test
图 12 液态降水在历史时期的平均分布(a)、年变化趋势(b)和在未来时期的平均分布(c)、年变化趋势(d)
阴影区域代表通过 99% 的 M-K 显著性检验
Fig. 12 Of liquid precipitation, average distribution (a) and annual variation trends (b) in historical periods, and average distribution (c) and annual variations trends (d) in future periods
The shaded areas represent passing 99% M-K significance test
图 13 近地表2 m气温在历史时期的平均分布(a)、年变化趋势(b)和在未来时期的平均分布(c)、年变化趋势(d)
阴影区域代表通过 99% 的 M-K 显著性检验
Fig. 13 Of near-surface air temperature, average distribution (a) and annual variation trends (b) in historical periods, and average distribution (c) and annual variations trends (d) in future periods
The shaded areas represent passing 99% M-K significance test
表 1 本文使用的EC-Earth3模式数据
Tab. 1 The EC-Earth3 model data used in this paper
实验筛选 两个实验的变量 水平网格数
(经度 × 纬度)历史实验(1990−2014年)、共
享社会经济路径(2015−2100年)海冰密集度(siconc) 362 × 292 海冰厚度(sithick) 362 × 292 雪冰生长量(sidmasssi) 362 × 292 降水通量(pr) 512 × 256 降雪通量(prsn) 512 × 256 近地表2 m气温(tas) 512 × 256 海洋格点面积(areacello) 362 × 292 -
[1] Rantanen M, Karpechko A Y, Lipponen A, et al. The Arctic has warmed nearly four times faster than the globe since 1979[J]. Communications Earth & Environment, 2022, 3(1): 168 [2] Webster M A, Rigor I G, Nghiem S V, et al. Interdecadal changes in snow depth on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5395−5406. doi: 10.1002/2014JC009985 [3] Leppäranta M. Freezing of Lakes and the Evolution of Their Ice Cover[M]. Berlin/Heidelberg, Germany: Springer, 2015. [4] Moslet P O. Field testing of uniaxial compression strength of columnar sea ice[J]. Cold Regions Science and Technology, 2007, 48(1): 1−14. doi: 10.1016/j.coldregions.2006.08.025 [5] Fernández-Méndez M, Olsen L M, Kauko H M, et al. Algal hot spots in a changing Arctic Ocean: sea-ice ridges and the snow-ice interface[J]. Frontiers in Marine Science, 2018, 5: 75. doi: 10.3389/fmars.2018.00075 [6] Haas C, Thomas D N, Bareiss J. Surface properties and processes of perennial Antarctic sea ice in summer[J]. Journal of Glaciology, 2001, 47(159): 613−625. doi: 10.3189/172756501781831864 [7] Vavrus S J, Wynne R H, Foley J A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model[J]. Limnology and Oceanography, 1996, 41(5): 822−831. doi: 10.4319/lo.1996.41.5.0822 [8] Fichefet T, Maqueda M A M. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover[J]. Climate Dynamics, 1999, 15(4): 251−268. doi: 10.1007/s003820050280 [9] Wang Caixin, Cheng Bin, Wang Keguang, et al. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard[J]. Polar Research, 2015, 34(1): 20828. doi: 10.3402/polar.v34.20828 [10] Ohata Y, Toyota T, Shiraiwa T. Lake ice formation processes and thickness evolution at Lake Abashiri, Hokkaido, Japan[J]. Journal of Glaciology, 2016, 62(233): 563−578. doi: 10.1017/jog.2016.57 [11] Merkouriadi I, Cheng Bin, Graham R M, et al. Critical role of snow on sea ice growth in the Atlantic sector of the Arctic Ocean[J]. Geophysical Research Letters, 2017, 44(20): 10,479−10,485. [12] Perovich D K, Roesler C S, Pegau W S. Variability in Arctic sea ice optical properties[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1193−1208. doi: 10.1029/97JC01614 [13] Merkouriadi I, Liston G E, Graham R M, et al. Quantifying the potential for snow-ice formation in the Arctic Ocean[J]. Geophysical Research Letters, 2020, 47(4): e2019GL085020. doi: 10.1029/2019GL085020 [14] Shu Q, Song Z, Qiao F. Assessment of sea ice simulations in the CMIP5 models[J]. The Cryosphere, 2015, 9(1): 399−409. doi: 10.5194/tc-9-399-2015 [15] Cheng Bin, Launiainen J, Vihma T. Modelling of superimposed ice formation and subsurface melting in the Baltic Sea[J]. Geophysica, 2003, 39(1/2): 31−50. [16] Cheng Bin, Zhang Zhanhai, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09020. [17] 杨清华, 程斌, 雷瑞波, 等. 北极夏季海冰反照率的观测和数值模拟试验[J]. 海洋学报, 2011, 33(2): 42−47.Yang Qinghua, Cheng Bin, Lei Ruibo, et al. Arctic sea ice albedo in summer: observation and modelling experiments[J]. Haiyang Xuebao, 2011, 33(2): 42−47. [18] Zhao Jiechen, Cheng Bin, Vihma T, et al. Observation and thermodynamic modeling of the influence of snow cover on landfast sea ice thickness in Prydz Bay, East Antarctica[J]. Cold Regions Science and Technology, 2019, 168: 102869. doi: 10.1016/j.coldregions.2019.102869 [19] Döscher R, Acosta M, Alessandri A, et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6[J]. Geoscientific Model Development, 2022, 15(7): 2973−3020. doi: 10.5194/gmd-15-2973-2022 [20] Docquier D, Massonnet F, Barthélemy A, et al. Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6[J]. The Cryosphere, 2017, 11(6): 2829−2846. doi: 10.5194/tc-11-2829-2017 [21] Vancoppenolle M, Bouillon S, Fichefet T, et al. The Louvain-la-Neuve sea ice model[J]. Notes du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Paris, France, 2012, 31. [22] Rousset C, Vancoppenolle M, Madec G, et al. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities[J]. Geoscientific Model Development, 2015, 8(10): 2991−3005. doi: 10.5194/gmd-8-2991-2015 [23] Cheng Bin, Vihma T, Pirazzini R, et al. Modelling of superimposed ice formation during the spring snowmelt period in the Baltic Sea[J]. Annals of Glaciology, 2006, 44: 139−146. doi: 10.3189/172756406781811277 [24] Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100: 172−182. doi: 10.1016/j.gloplacha.2012.10.014 [25] 李瑜洁, 高晓清, 张录军, 等. 近30年北极海冰运动特征分析[J]. 高原气象, 2019, 38(1): 114−123. doi: 10.7522/j.issn.1000-0534.2018.00115Li Yujie, Gao Xiaoqing, Zhang Lujun, et al. Analysis on the characteristics of arctic sea ice movement in recent 30 years[J]. Plateau Meteorology, 2019, 38(1): 114−123 doi: 10.7522/j.issn.1000-0534.2018.00115 [26] 何琰, 赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079−1091.He Yan, Zhao Jinping. Distributions and seasonal variations of fronts in GIN seas[J]. Advances in Earth Science, 2011, 26(10): 1079−1091. [27] 牟龙江, 赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709Mou Longjiang, Zhao Jinping. Variability of the Greenland Sea ice edge[J]. Advances in Earth Science, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709 -