留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬季白令海海冰范围变化及其对大气响应机制研究

袁泉 张凡一 雷瑞波 张国胜

袁泉,张凡一,雷瑞波,等. 冬季白令海海冰范围变化及其对大气响应机制研究[J]. 海洋学报,2022,44(11):31–41 doi: 10.12284/hyxb2022117
引用本文: 袁泉,张凡一,雷瑞波,等. 冬季白令海海冰范围变化及其对大气响应机制研究[J]. 海洋学报,2022,44(11):31–41 doi: 10.12284/hyxb2022117
Yuan Quan,Zhang Fanyi,Lei Ruibo, et al. Variations in winter sea ice extent and its responses to atmospheric forcing in the Bering Sea[J]. Haiyang Xuebao,2022, 44(11):31–41 doi: 10.12284/hyxb2022117
Citation: Yuan Quan,Zhang Fanyi,Lei Ruibo, et al. Variations in winter sea ice extent and its responses to atmospheric forcing in the Bering Sea[J]. Haiyang Xuebao,2022, 44(11):31–41 doi: 10.12284/hyxb2022117

冬季白令海海冰范围变化及其对大气响应机制研究

doi: 10.12284/hyxb2022117
基金项目: 国家自然科学基金面上项目(41976219)
详细信息
    作者简介:

    袁泉(1997-),男,安徽省萧县人,研究方向为极地海洋学。E-mail: yuanquan@nuist.edu.cn

    通讯作者:

    雷瑞波,主要从事极地海冰过程研究。E-mail: leiruibo@pric.org.cn

  • 中图分类号: P731.15

Variations in winter sea ice extent and its responses to atmospheric forcing in the Bering Sea

  • 摘要: 白令海是冬季北极海冰变化最明显的区域之一,该区域海冰的季节和长期变化与局地的气候、水文环境和生态系统密切相关,并会影响我国的天气气候过程。为了识别该区冬季海冰的长期变化,基于Hadley中心数据,采用滑动t检验和线性回归分析方法对白令海1960–2020年海冰范围的变化趋势及其空间差异进行分析,并分析了海冰变化对大气环流等大气强迫的影响。结果表明:白令海冬季海冰范围在1960–2020年显著减小,20世纪70年代和2000年前后白令海海冰范围存在显著的均值突变。其过程中伴随着阿留申低压中心低压加强、核心位置向白令海西部偏移以及对应风场分布的变化,这个过程存在一个近20 a周期的振荡。同时,太平洋年代际震荡的相位变化可以通过改变海平面气压来调节经向风,改变进入白令海的热平流,进而影响白令海冬季海冰范围。因此,阿留申低压系统和北太平洋年代际振荡对冬季白令海海冰的变化起到重要的调节作用。
  • 图  1  1960–2020年白令海冬季平均海冰密集度

    Fig.  1  Mean winter sea ice concentration in the Bering Sea during 1960−2020

    图  2  1960–2020年白令海海冰密集度变化趋势的空间分布(红X为未通过显著性检验的网格点)

    Fig.  2  Spatial distribution of the long-term trend of sea ice concentration in the Bering Sea during 1960−2020 (red X is the grid point that do not pass the significance test)

    图  3  1960–2020年白令海冬季海冰范围及其趋势 (直线表示线性趋势)

    Fig.  3  Winter sea ice extent and trends in the Bering Sea during 1960−2020 (straight line indicates linear trend)

    图  4  1960–2020年白令海冬季海冰范围的滑动t检验

    Fig.  4  Sliding t-test of winter sea ice extent in the Bering Sea during 1960−2020

    图  5  1976–1979年和2012–2018年白令海冬季海冰密集度差异

    Fig.  5  Differences of winter sea ice concentration in the Bering Sea between 1976 and 1979, as well as 2012 and 2018

    图  6  1976年、1979 年和 2012年、2018 年海平面气压场、风矢量场及差异场

    Fig.  6  Sea level pressure field, wind vector field and difference field between 1976 and 1979, 2012 and 2018

    图  7  Q1−Q4的4个时期的海平面气压场、风矢量场及差异场

    Fig.  7  Sea level pressure field, wind vector field and difference field for the four periods from Q1 to Q4

    图  8  1976与1979年(a)、2012与2018年(b)、Q1与Q2(c)、Q3与Q4(d)的地面气温差异场(后者减去前者)

    Fig.  8  The surface air temperature difference field between 1976 and 1979 (a), 2012 and 2018 (b), Q1 and Q2 (c), Q3 and Q4 (d) periods (the latter minus the former)

    图  9  1960–2020年白令海冬季海冰范围和近地面气温

    Fig.  9  Winter sea ice extent and near surface air temperature in the Bering Sea, 1960−2020

    图  10  1960–2020年冬季太平洋年代际振荡(PDO)指数和白令海海平面气压(SLP)趋势分析(虚线表示线性趋势)

    Fig.  10  Pacific decadal oscillation (PDO) index and sea level pressure (SLP) in Bering Sea during winter, 1960−2020 (dashed line indicates linear trend)

    图  11  1960–2020年冬季海平面气压差和海冰范围距平

    Fig.  11  Winter sea level pressure difference and sea ice extent anomaly during 1960−2020

  • [1] Overland J E, Stabeno P J. Is the climate of the Bering Sea warming and affecting the ecosystem?[J]. EOS, Transactions American Geophysical Union, 2004, 85(33): 309−312.
    [2] Zhang Jinlun, Woodgate R, Moritz R. Sea ice response to atmospheric and oceanic forcing in the Bering Sea[J]. Journal of Physical Oceanography, 2010, 40(8): 1729−1747. doi: 10.1175/2010JPO4323.1
    [3] Stabeno P J, Hunt G L. Overview of the inner front and Southeast Bering Sea carrying capacity programs[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(26): 6157−6168. doi: 10.1016/S0967-0645(02)00339-9
    [4] Stabeno P J, Bond N A, Salo S A. On the recent warming of the southeastern Bering Sea Shelf[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(23/26): 2599−2618.
    [5] Bliss A C, Steele M, Peng Ge, et al. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record[J]. Environmental Research Letters, 2019, 14(4): 045003. doi: 10.1088/1748-9326/aafb84
    [6] Wang Jia, Hu Haoguo, Mizobata K, et al. Seasonal variations of sea ice and ocean circulation in the Bering Sea: A model-data fusion study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C2): C02011.
    [7] Stabeno P J, Bond N A, Kachel N B, et al. On the temporal variability of the physical environment over the south-eastern Bering Sea[J]. Fisheries Oceanography, 2001, 10(1): 81−98. doi: 10.1046/j.1365-2419.2001.00157.x
    [8] Bluhm B A, Gradinger R. Regional variability in food availability for Arctic marine mammals[J]. Ecological Applications, 2008, 18(sp2): S77−S96. doi: 10.1890/06-0562.1
    [9] Ding Yihui, Krishnamurti T N. Heat budget of the Siberian high and the winter monsoon[J]. Monthly Weather Review, 1987, 115(10): 2428−2449. doi: 10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2
    [10] Ding Yihui. Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia[J]. Meteorology and Atmospheric Physics, 1990, 44(1): 281−292.
    [11] Zhang Yi, Sperber K R, Boyle J S. Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis[J]. Monthly Weather Review, 1997, 125(10): 2605−2619. doi: 10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2
    [12] Compo G P, Kiladis G N, Webster P J. The horizontal and vertical structure of East Asian winter monsoon pressure surges[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(553): 29−54. doi: 10.1002/qj.49712555304
    [13] 孙建奇, 王会军, 袁薇. 2007年3月中国东部北方地区一次强灾害性暴风雪事件的成因初探[J]. 气象学报, 2009, 67(3): 469−477. doi: 10.11676/qxxb2009.047

    Sun Jianqi, Wang Huijun, Yuan Wei. A preliminary investigation on causes of the catastrophic snowstorm in March 2007 in the northeastern parts of China[J]. Acta Meteorologica Sinica, 2009, 67(3): 469−477. doi: 10.11676/qxxb2009.047
    [14] Wang Huijun, Yu Entao, Yang Song. An exceptionally heavy snowfall in Northeast China: Large-scale circulation anomalies and hindcast of the NCAR WRF model[J]. Meteorology and Atmospheric Physics, 2011, 113(1): 11−25.
    [15] Li Fei, Wang Huijun. Relationship between Bering Sea ice cover and East Asian winter monsoon year-to-year variations[J]. Advances in Atmospheric Sciences, 2013, 30(1): 48−56. doi: 10.1007/s00376-012-2071-2
    [16] Mantua N J, Hare S R, Zhang Yuan, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [17] Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dynamics, 1994, 9(6): 303−319. doi: 10.1007/BF00204745
    [18] Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1297−1300. doi: 10.1029/98GL00950
    [19] Overland J E, Adams J M, Bond N A. Decadal variability of the Aleutian low and its relation to high-latitude circulation[J]. Journal of Climate, 1999, 12(5): 1542−1548. doi: 10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2
    [20] Stabeno P J, Overland J E. Bering Sea shifts toward an earlier spring transition[J]. EOS, Transactions American Geophysical Union, 2001, 82(29): 317−321.
    [21] Niebauer H J, Day R H. Causes of interannual variability in the sea ice cover of the eastern Bering Sea[J]. GeoJournal, 1989, 18(1): 45−59. doi: 10.1007/BF00722385
    [22] Overland J E, Bond N A, Adams J M. North Pacific atmospheric and SST anomalies in 1997: links to ENSO?[J]. Fisheries Oceanography, 2001, 10(1): 69−80. doi: 10.1046/j.1365-2419.2001.00154.x
    [23] Niebauer H J. Sea ice and temperature variability in the eastern Bering Sea and the relation to atmospheric fluctuations[J]. Journal of Geophysical Research: Oceans, 1980, 85(C12): 7507−7515. doi: 10.1029/JC085iC12p07507
    [24] Overland J E, Pease C H. Cyclone climatology of the Bering Sea and its relation to sea ice extent[J]. Monthly Weather Review, 1982, 110(1): 5−13. doi: 10.1175/1520-0493(1982)110<0005:CCOTBS>2.0.CO;2
    [25] Sasaki Y N, Minobe S. Seasonally dependent interannual variability of sea ice in the Bering Sea and its relation to atmospheric fluctuations[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05011.
    [26] Niebauer H J. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947–1996[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27717−27737. doi: 10.1029/98JC02499
    [27] Rodionov S N, Overland J E, Bond N A. The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification[J]. Journal of Climate, 2005, 18(1): 160−177. doi: 10.1175/JCLI3253.1
    [28] 胡宪敏, 苏洁, 赵进平, 等. 白令海楚科奇海的海冰范围变化特征[J]. 冰川冻土, 2007, 29(1): 53−60.

    Hu Xianmin, Su Jie, Zhao Jinping, et al. Variation Characteristics of the Sea Ice Extent in Bering-Chukchi Seas[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 53−60.
    [29] Frey K E, Moore G W K, Cooper L W, et al. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic region[J]. Progress in Oceanography, 2015, 136: 32−49. doi: 10.1016/j.pocean.2015.05.009
    [30] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 108(D14): 4407.
    [31] Cai Qiongqiong, Beletsky D, Wang Jia, et al. Interannual and decadal variability of arctic summer sea ice associated with atmospheric teleconnection patterns during 1850–2017[J]. Journal of Climate, 2021, 34(24): 9931−9955.
    [32] Meier W N, Fetterer F, Windnagel A K, et al. NOAA/NSIDC climate data record of passive microwave sea ice concentration, Version 4[EB/OL]. (2021–05–31) [2022–01–26]. https://nsidc.org/data/G02202/versions/4.
    [33] Cavalieri D J, Gloersen P, Campbell W J. Determination of sea ice parameters with the NIMBUS 7 SMMR[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D4): 5355−5369. doi: 10.1029/JD089iD04p05355
    [34] Comiso J C. Characteristics of arctic winter sea ice from satellite multispectral microwave observations[J]. Journal of Geophysical Research: Atmospheres, 1986, 91(C1): 975−994. doi: 10.1029/JC091iC01p00975
    [35] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [36] Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978–1996[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20837−20856. doi: 10.1029/1999JC900082
    [37] Papineau J M. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO[J]. International Journal of Climatology, 2001, 21(13): 1577−1592. doi: 10.1002/joc.686
    [38] Hartmann B, Wendler G. The significance of the 1976 Pacific climate shift in the climatology of Alaska[J]. Journal of Climate, 2005, 18(22): 4824−4839. doi: 10.1175/JCLI3532.1
    [39] Wendler G, Shulski M. A century of climate change for Fairbanks, Alaska[J]. Arctic, 2009, 62(3): 295−300.
    [40] Rodionov S N, Bond N A, Overland J E. The Aleutian low, storm tracks, and winter climate variability in the Bering Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(23/26): 2560−2577.
    [41] Wendler G, Chen L, Moore B. Recent sea ice increase and temperature decrease in the Bering Sea area, Alaska[J]. Theoretical and Applied Climatology, 2014, 117(3): 393−398.
    [42] Wendler G, Chen L, Moore B. The first decade of the new century: a cooling trend for most of Alaska[J]. The Open Atmospheric Science Journal, 2012, 6(1): 111−116. doi: 10.2174/1874282301206010111
    [43] Stabeno P J, Bell S W. Extreme conditions in the Bering Sea (2017–2018): record-breaking low sea-ice extent[J]. Geophysical Research Letters, 2019, 46(15): 8952−8959. doi: 10.1029/2019GL083816
    [44] Lindsay R W, Zhang J. The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point?[J]. Journal of Climate, 2005, 18(22): 4879−4894. doi: 10.1175/JCLI3587.1
    [45] Kikuchi G, Abe H, Hirawake T, et al. Distinctive spring phytoplankton bloom in the Bering Strait in 2018: A year of historically minimum sea ice extent[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181–182: 104905. doi: 10.1016/j.dsr2.2020.104905
    [46] IARC. In the coastal communities near the Bering Strait, a winter unlike the rest[EB/OL]. (2018–04–16) [2022–01–26]. https://www.climate.gov/news-features/features/coastal-communities-near-bering-strait-winter-unlike-rest.
  • 加载中
图(11)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  121
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-04-28
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-11-03

目录

    /

    返回文章
    返回