留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hough变换原理的海冰厚度识别方法

张培宣 陈晓东 孔帅 季少鹏 季顺迎

张培宣,陈晓东,孔帅,等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报,2022,44(7):161–169 doi: 10.12284/hyxb2022114
引用本文: 张培宣,陈晓东,孔帅,等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报,2022,44(7):161–169 doi: 10.12284/hyxb2022114
Zhang Peixuan,Chen Xiaodong,Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao,2022, 44(7):161–169 doi: 10.12284/hyxb2022114
Citation: Zhang Peixuan,Chen Xiaodong,Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao,2022, 44(7):161–169 doi: 10.12284/hyxb2022114

基于Hough变换原理的海冰厚度识别方法

doi: 10.12284/hyxb2022114
基金项目: 国家重点研发计划重点专项(2018YFA0605902);国家自然科学基金(42176241,52101300,12102083);中央高校基本科研业务费(DUT21LK03);水动力学重点实验室稳定支持基金;国家级大学生创新创业训练计划支持项目(20211014110061)。
详细信息
    作者简介:

    张培宣(2000-),男,河北省邢台市人,主要从事计算机图形学研究。E-mail: hbxtzpx@mail.dlut.edu.cn

    通讯作者:

    陈晓东(1987-),男,辽宁省抚顺市人,博士,工程师,主要从事海冰力学及极地海洋工程研究。E-mail: chenxiaodong@dlut.edu.cn

  • 中图分类号: P731.15;P751

Research on sea ice thickness identification method based on Hough transform principle

  • 摘要: 作为主要海冰参数之一的海冰厚度对海冰灾害评估和极地船舶与冰区海洋工程结构设计具有重要意义。采用船侧视频图像对海冰厚度进行自动识别是提取海冰参数的重要方式。本文采用基于Hough变换的机器视觉方法对海冰翻转过程中的表面轮廓线进行识别,从而自动获取海冰厚度参数。根据海冰图像特征制定了图像边缘识别−近似线段识别−海冰轮廓线段组识别的计算流程。在线段组识别过程中,根据海冰的几何特征建立了由夹角、长度及间距参数相关联的3个识别参数所组成的判断条件。为验证方法的可靠性,将该方法用于“雪龙”号第八次北极科考的走航实测数据中,结果表明,3个识别参数均具有最优阈值。当低于最优值时提高阈值可增加有效识别率;而高于最优值时提高阈值则会导致误判率增大,采用最优阈值可使冰厚识别率达到90%以上。因此,采用基于Hough变换的冰厚识别方法可实现对海冰厚度的实时监测。
  • 图  1  “雪龙”号科考船北极航行中的冰厚测量示例[29]

    Fig.  1  Example of ice thickness measurement during the Arctic voyage of Xuelong scientific research ship[29]

    图  2  边缘线段识别结果

    a. 坐标系变换的演示图;b. 极坐标空间的Hough变换

    Fig.  2  Recognition result of edge segment

    a. Schematic diagram of coordinate transform; b. Hough transform in polar coordinate space

    图  3  边缘线段识别结果

    所识别线段用不同颜色标出

    Fig.  3  Recognition result of edge segment

    The identified lines segment are marked with different colors

    图  4  边缘线段组错误判断示例

    a. 两线间夹角差值过大;b. 两线间长度差值过大;c. 两线间间距过小

    Fig.  4  Error judgment example of edge segment group

    a. Excessive angle difference between two lines; b. excessive length difference between two lines; c. insufficient distance between two lines

    图  5  两直线相交原理分析

    Fig.  5  Principle analysis of intersection of two straight lines

    图  7  基于Hough变换的海冰厚度识别

    所识别线段用不同颜色标出

    Fig.  7  Identifications of sea ice thickness based on Hough transformation

    The identified lines segment are marked with different colors

    图  6  基于Hough变换的海冰厚度识别

    所识别线段用不同颜色标出

    Fig.  6  Identifications of sea ice thickness based on Hough transformation

    The identified lines segment are marked with different colors

    图  8  夹角阈值试验曲线

    Fig.  8  Experimental curve of angle threshold

    图  9  长度阈值试验曲线

    Fig.  9  Experimental curve of length threshold

    图  10  间距阈值试验曲线

    Fig.  10  Experimental curve of distance threshold

  • [1] Leira B, Børsheim L, Espeland Ø, et al. Ice-load estimation for a ship hull based on continuous response monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223(4): 529−540. doi: 10.1243/14750902JEME141
    [2] Wadhams P, Tucker III W B, Krabill W B, et al. Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring[J]. Journal of Geophysical Research: Oceans, 1992, 97(C12): 20325−20334. doi: 10.1029/92JC02014
    [3] 陈晓东, 崔海鑫, 王安良, 等. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036

    Chen Xiaodong, Cui Haixin, Wang Anliang, et al. Experimental study on sea ice tensile strength based on brazilian tests[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036
    [4] 毕祥军, 于雷, 王瑞学, 等. 海冰厚度的现场图像测量方法[J]. 冰川冻土, 2005, 27(4): 563−567.

    Bi Xiangjun, Yu Lei, Wang Ruixue, et al. Digitalized image method for measuring sea ice thickness[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 563−567.
    [5] 孔帅, 崔洪宇, 季顺迎. 船舶结构海冰载荷的实船测量及反演方法研究[J]. 振动与冲击, 2020, 39(20): 8−16.

    Kong Shuai, Cui Hongyu, Ji Shunying. Field measurement and an identification method of sea ice load on ship structures[J]. Journal of Vibration and Shock, 2020, 39(20): 8−16.
    [6] 李志军. 渤海海冰灾害和人类活动之间的关系[J]. 海洋预报, 2010, 27(1): 8−12. doi: 10.3969/j.issn.1003-0239.2010.01.002

    Li Zhijun. The relations between sea ice disasters and human activities in Bohai Sea[J]. Marine Forecasts, 2010, 27(1): 8−12. doi: 10.3969/j.issn.1003-0239.2010.01.002
    [7] 孔帅, 陈晓东, 崔洪宇, 等. 船体结构冰载荷的远场识别方法及试验验证[J]. 船舶力学, 2021, 25(7): 869−878. doi: 10.3969/j.issn.1007-7294.2021.07.004

    Kong Shuai, Chen Xiaodong, Cui Hongyu, et al. Far-field ice load identification method of ship structure and experimental verification[J]. Journal of Ship Mechanics, 2021, 25(7): 869−878. doi: 10.3969/j.issn.1007-7294.2021.07.004
    [8] 张晰. 极化SAR渤海海冰厚度探测研究[D]. 青岛: 中国海洋大学, 2011.

    Zhang Xi. Research on sea ice thickness detection by polarimetric SAR in Bohai Sea[D]. Qingdao: Ocean University of China, 2011.
    [9] Kim J W, Kim D J, Hwang B J. Characterization of arctic sea ice thickness using high-resolution spaceborne polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 13−22. doi: 10.1109/TGRS.2011.2160070
    [10] Galley R J, Trachtenberg M, Langlois A, et al. Observations of geophysical and dielectric properties and ground penetrating radar signatures for discrimination of snow, sea ice and freshwater ice thickness[J]. Cold Regions Science and Technology, 2009, 57(1): 29−38. doi: 10.1016/j.coldregions.2009.01.003
    [11] Shih S E, Ding K H, Nghiem S V, et al. Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1589−1598. doi: 10.1109/36.718862
    [12] 李志军, 孔祥鹏, 张勇, 等. 近岸堆积冰形成过程的原型调查[J]. 大连海事大学学报, 2009, 35(3): 9−12.

    Li Zhijun, Kong Xiangpeng, Zhang Yong, et al. Field investigations of piled ice forming in coastal area[J]. Journal of Dalian Maritime University, 2009, 35(3): 9−12.
    [13] Yuan Shuai, Liu Chengyu, Liu Xueqin. Practical model of sea ice thickness of Bohai Sea based on MODIS data[J]. Chinese Geographical Science, 2018, 28(5): 863−872. doi: 10.1007/s11769-018-0986-y
    [14] Su Hua, Wang Yunpeng. Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009–2010 winter[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10018.
    [15] Han Yanling, Gao Yi, Zhang Yun, et al. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning[J]. Remote Sensing, 2019, 11(18): 2170. doi: 10.3390/rs11182170
    [16] 陈诗怡, 曹云锋, 惠凤鸣, 等. 基于遥感观测的2010~2017年秋季北极东北航道通航能力时空变化[J]. 科学通报, 2019, 64(14): 1515−1525. doi: 10.1360/N972018-01083

    Chen Shiyi, Cao Yunfeng, Hui Fengming, et al. Observed spatial-temporal changes in the autumn navigability of the Arctic Northeast Route from 2010 to 2017[J]. Chinese Science Bulletin, 2019, 64(14): 1515−1525. doi: 10.1360/N972018-01083
    [17] Alexandrov V, Sandven S, Wahlin J, et al. The relation between sea ice thickness and freeboard in the Arctic[J]. The Cryosphere, 2010, 4(3): 373−380. doi: 10.5194/tc-4-373-2010
    [18] 张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10−18, 24.

    Zhang Run, Wang Yongbin. Research on machine learning with algorithm and development[J]. Journal of Communication University of China (Science and Technology), 2016, 23(2): 10−18, 24.
    [19] 王键伟, 段庆林, 季顺迎. 冰区航行中船舶结构冰载荷的现场测量与反演方法研究进展[J]. 力学进展, 2020, 50(1): 202003. doi: 10.6052/1000-0992-20-007

    Wang Jianwei, Duan Qinglin, Ji Shunying. Research progress of field measurements and inversion methods of ice loads on ship structure during ice navigation[J]. Advances in Mechanics, 2020, 50(1): 202003. doi: 10.6052/1000-0992-20-007
    [20] Sundin E, Makkonen L. Ice loads on a lattice tower estimated by weather station data[J]. Journal of Applied Meteorology and Climatology, 1998, 37(5): 523−529. doi: 10.1175/1520-0450(1998)037<0523:ILOALT>2.0.CO;2
    [21] 岳前进, 毕祥军, 季顺迎, 等. 航海雷达识别与跟踪海冰试验[J]. 大连理工大学学报, 2000, 40(4): 500−504. doi: 10.3321/j.issn:1000-8608.2000.04.031

    Yue Qianjin, Bi Xiangjun, Ji Shunying, et al. Recognition and tracing of sea ice by marine radar on a fixed oil/gas platform[J]. Journal of Dalian University of Technology, 2000, 40(4): 500−504. doi: 10.3321/j.issn:1000-8608.2000.04.031
    [22] 李志军, 韩明, 秦建敏, 等. 冰厚变化的现场监测现状和研究进展[J]. 水科学进展, 2005, 16(5): 753−757. doi: 10.3321/j.issn:1001-6791.2005.05.025

    Li Zhijun, Han Ming, Qin Jianmin, et al. States and advances in monitor of ice thickness change[J]. Advances in Water Science, 2005, 16(5): 753−757. doi: 10.3321/j.issn:1001-6791.2005.05.025
    [23] Kern S, Khvorostovsky K, Skourup H, et al. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise[J]. The Cryosphere, 2015, 9(1): 37−52. doi: 10.5194/tc-9-37-2015
    [24] 季顺迎, 陈晓东, 刘煜, 等. 基于油气平台的海冰雷达监测图像处理及冰速测量[J]. 海洋学报, 2013, 35(3): 119−127.

    Ji Shunying, Chen Xiaodong, Liu Yu, et al. Radar digital image technologies for the sea ice field observation based on an oil/gas platform and the measurement of the sea ice velocity[J]. Haiyang Xuebao, 2013, 35(3): 119−127.
    [25] 石立坚, 施英妮, 王其茂, 等. 水平集方法在卫星遥感图像海冰边缘检测中的应用[J]. 遥感信息, 2015, 30(3): 89−92, 98. doi: 10.3969/j.issn.1000-3177.2015.03.016

    Shi Lijian, Shi Yingni, Wang Qimao, et al. Sea ice edge detection with multiscale levelset method[J]. Remote Sensing Information, 2015, 30(3): 89−92, 98. doi: 10.3969/j.issn.1000-3177.2015.03.016
    [26] Alekseeva T, Tikhonov V, Frolov S, et al. Comparison of arctic sea ice concentrations from the NASA team, ASI, and VASIA2 algorithms with summer and winter ship data[J]. Remote Sensing, 2019, 11(21): 2481. doi: 10.3390/rs11212481
    [27] 杨全银, 魏雅杰, 王欣. 基于Hough变换的线段检测算法[J]. 红外与激光工程, 2009, 38(3): 525−529. doi: 10.3969/j.issn.1007-2276.2009.03.033

    Yang Quanyin, Wei Yajie, Wang Xin. Line segment detection algorithm based on Hough transform[J]. Infrared and Laser Engineering, 2009, 38(3): 525−529. doi: 10.3969/j.issn.1007-2276.2009.03.033
    [28] Illingworth J, Kittler J. A survey of the hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87−116. doi: 10.1016/S0734-189X(88)80033-1
    [29] 崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011

    Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
    [30] Jiang T, Merickel M B. Identification and boundary extraction of blobs in complex imagery[J]. Computerized Medical Imaging and Graphics, 1989, 13(5): 369−382. doi: 10.1016/0895-6111(89)90224-3
    [31] Helterbrand J D, Davidson J L, Cressie N. Optimal closed boundary identification in gray-scale imagery[J]. Journal of Mathematical Imaging and Vision, 1995, 5(3): 179−205. doi: 10.1007/BF01248371
    [32] Duda R O, Hart P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11−15. doi: 10.1145/361237.361242
    [33] 祁宝英. 运用Hough变换提高直线检测效率[J]. 计算机系统应用, 2012, 21(6): 228−231. doi: 10.3969/j.issn.1003-3254.2012.06.053

    Qi Baoying. Improve efficiency of line detection using Hough transform[J]. Computer Systems & Applications, 2012, 21(6): 228−231. doi: 10.3969/j.issn.1003-3254.2012.06.053
    [34] 张晰, 张杰, 孟俊敏, 等. 基于极化散射特征的极化合成孔径雷达海冰分类方法研究: 以渤海海冰分类为例[J]. 海洋学报, 2013, 35(5): 95−101.

    Zhang Xi, Zhang Jie, Meng Junmin, et al. Polarimetric scattering characteristics based sea ice types classification by polarimetric synthetic aperture radar: taking sea ice in the Bohai Sea for example[J]. Haiyang Xuebao, 2013, 35(5): 95−101.
    [35] 楼万翔, 黄迪. 基于 Hough 变换的目标交叉跟踪算法[J]. 舰船电子工程, 2016, 36(9): 35−38. doi: 10.3969/j.issn.1672-9730.2016.09.009

    Lou Wanxiang, Huang Di. Trace intersecting targets tracking based on Hough transform[J]. Ship Electronic Engineering, 2016, 36(9): 35−38. doi: 10.3969/j.issn.1672-9730.2016.09.009
    [36] 左磊, 李明, 张晓伟, 等. 基于改进Hough变换的海面微弱目标检测[J]. 电子与信息学报, 2012, 34(4): 923−928.

    Zuo Lei, Li Ming, Zhang Xiaowei, et al. Small-target detection in sea clutter based on improved Hough transform[J]. Journal of Electronics & Information Technology, 2012, 34(4): 923−928.
    [37] Zhong Youping, Zuo Qi, Zhou Yang, et al. A new image-based algorithm for icing detection and icing thickness estimation for Transmission Lines[C]//2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). San Jose: IEEE, 2013: 1−6.
  • 加载中
图(10)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  112
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回