Density Zoning and Formation Mechanism of Seagrass Beds in Caofeidian Based on Spatial Heterogeneity Analysis
-
摘要: 以我国现存面积最大的曹妃甸海草床作为研究对象,采用遥感解译、现场调查和模型解析相结合的方法,开展了曹妃甸海草床密度量化分区及其空间异质性形成机制研究。通过高分辨率卫星遥感影像解译并结合现场实地验证,获得了曹妃甸海草床“北密南疏”分布格局下三类核心分区的量化数据(密集区:面积7.31 km2,占比18.34%;中等密集区:面积10.36 km2,占比26.00%;稀疏区:面积22.18 km2,占比55.66%),整体分布呈现出斑块化嵌合分布的特征。基于现场调查获取的光照、铵盐、底质密度等10项环境资料,运用多层感知器–人工神经网络(MLP-ANN)模型解析发现,底质内摩擦角(贡献率18%)、水体温度(贡献率15%)、底质磷酸盐(贡献率15%)是影响海草床密度分区的核心因子,且累计影响占比达48%。研究表明,曹妃甸海草床的密度分区是由自然动力因素与人为活动共同作用形成的:南部区域由于潮汐海流较强,导致底质遭受冲刷,同时叠加油田勘探、航道疏浚等工程活动以及陆源污染的影响,形成了“底质扰动–营养失衡”的退化链;北部区域远离这些扰动源,并且经过生态修复,底质条件得到优化,从而为中高密度海草床区域的形成提供了支撑。本研究填补了曹妃甸海草床密度分区量化研究及其机制研究方面的不足,为渤海湾海草床的科学评估及有效修复提供了科学依据和技术范式。Abstract: Taking the Caofeidian seagrass bed—the largest existing seagrass bed in China—as the research object, this study adopted a combined method of remote sensing interpretation, field investigation, and model analysis to carry out research on the quantitative zoning of density and the formation mechanism of spatial heterogeneity of the Caofeidian seagrass bed. Through the interpretation of high-resolution satellite remote sensing images and combined with on-site field verification, the quantitative data of three core zoning types under the spatial pattern of “dense in the north and sparse in the south” of the Caofeidian seagrass bed were obtained, namely the dense area (with an area of 7.31 km2, accounting for 18.34%), the moderately dense area (with an area of 10.36 km2, accounting for 26.00%), and the sparse area (with an area of 22.18 km2, accounting for 55.66%). On the whole, it shows the characteristics of patchy mosaic distribution. Based on 10 environmental data items (including illumination, ammonium, and sediment density) obtained from field investigations, an MLP-ANN (Multilayer Perceptron-Artificial Neural Network) model was used for analysis, and it was found that the internal friction angle of sediment (contribution: 18%), water temperature (contribution: 15%), and sediment phosphate (contribution: 15%) were the core driving factors affecting the density zoning of the seagrass bed, with a cumulative influence accounting for 48%. The research results indicated that the density zoning of the Caofeidian seagrass bed is formed by thejoint effect of natural dynamic factors and human activities: in the southern region, strong tidal currents cause sediment scouring, and superimposed on the impacts of engineering activities such as oilfield exploration and channel dredging, as well as land-based pollution, forming the degradation chain of “sediment disturbance - nutrient imbalance”; the northern region is far from these disturbance sources, and through ecological restoration, the sediment conditions have been optimized, thus providing support for the formation of the medium-to-high density seagrass bed areas. This study fills the gaps in the quantitative research on the density zoning of the Caofeidian seagrass bed and the research on its formation mechanism, and provides a scientific basis and technical paradigm for the scientific assessment and effective restoration of seagrass beds in the Bohai Bay.
-
Key words:
- seagrass beds /
- spatial heterogeneity /
- driving factors /
- ecological restoration /
- Caofeidian
-
图 3 海草床不同密度区环境要素归一化后的变化范围(归一化前原始指标单位:粘聚力/Pa、内摩擦角/(°)、深度/m、温度/℃、光照/μmol·m–2·s–1、盐度/‰、悬浮颗粒物/mg·L–1、溶解氧/mg·L–1、pH(无量纲)、NO2/μmol·L–1、NO3/μmol·L–1、PO4/μmol·L–1、NH4/μmol·L–1、粒度/μm、密度/g·cm–3、含水率/%、容重/g·cm–3、孔隙度/%、有机质/%、全氮/%、硫化物/mg·kg–1)
Fig. 3 Environmental factors in different density zones of seagrass beds (Normalized variation range; Original index units before normalization: Cohesion/Pa, Internal friction angle/(°), Depth/m, Temperature/℃, Illumination/μmol·m–2·s–1, Salinity/‰, Suspended particles/mg·L–1, Dissolved oxygen/mg·L–1, pH (Dimensionless), NO2/μmol·L–1, NO3/μmol·L–1, PO4/μmol·L–1, NH4/μmol·L–1, Grain size/μm, Density/g·cm–3, Moisture content/%, Bulk density/g·cm–3, Porosity/%, Organic matter/%, Total nitrogen/%, Sulfide/mg·kg–1)
表 1 调查站位信息
Tab. 1 Survey Station Information
站位编号 经度(°E) 纬度(°N) 所属区域类型 B1 118.6554 39.10212 裸沙区 B2 118.6846 39.12145 B3 118.7207 39.12517 B4 118.7636 39.11416 B5 118.6902 39.07851 B6 118.7428 39.08105 B7 118.6825 39.04003 B8 118.7153 39.0638 B9 118.7233 39.02618 S1 118.6828 39.09862 海草区 S2 118.6687 39.10263 S3 118.6723 39.09544 S4 118.6758 39.08691 S5 118.7239 39.04813 S6 118.7092 39.05451 S7 118.7012 39.04657 S8 118.7158 39.10457 S9 118.7261 39.08841 S10 118.7015 39.1044 S11 118.7101 39.11593 S12 118.7308 39.10625 -
[1] Shayka B F, Hesselbarth M H K, Schill S R, et al. The natural capital of seagrass beds in the Caribbean: evaluating their ecosystem services and blue carbon trade potential[J]. Biology Letters, 2023, 19(6): 20230075. doi: 10.1098/rsbl.2023.0075 [2] Do Amaral Camara Lima M, Bergamo T F, Ward R D, et al. A review of seagrass ecosystem services: providing nature-based solutions for a changing world[J]. Hydrobiologia, 2023, 850(12): 2655−2670. doi: 10.1007/s10750-023-05244-0 [3] Buonocore E, Donnarumma L, Appolloni L, et al. Marine natural capital and ecosystem services: an environmental accounting model[J]. Ecological Modelling, 2020, 424: 109029. doi: 10.1016/j.ecolmodel.2020.109029 [4] Sjafrie N D M, Rahmadi P, Triyono T, et al. Monetary value of ecosystem services in unhealthy seagrass meadows in Indonesia[J]. Ecosystem Services, 2024, 70: 101668. doi: 10.1016/j.ecoser.2024.101668 [5] Inocentes J A B, Escalante K D, Ginoo A I, et al. Assessing the economic value of a seagrass ecosystem in Southern Cebu, Philippines[J]. Biodiversitas Journal of Biological Diversity, 2025, 26(4): 1898−1912. doi: 10.13057/biodiv/d260439 [6] Cole S G, Moksnes P O. Valuing multiple eelgrass ecosystem services in Sweden: fish production and uptake of carbon and nitrogen[J]. Frontiers in Marine Science, 2016, 2: 121. doi: 10.3389/fmars.2015.00121 [7] Campagne C S, Salles J M, Boissery P, et al. The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits[J]. Marine Pollution Bulletin, 2015, 97(1/2): 391−400. doi: 10.1016/j.marpolbul.2015.05.061 [8] Wallner-Hahn S, Dahlgren M, de la Torre-Castro M. Linking seagrass ecosystem services to food security: the example of southwestern Madagascar’s small-scale fisheries[J]. Ecosystem Services, 2022, 53: 101381. doi: 10.1016/j.ecoser.2021.101381 [9] Wang Ming, Wang Weimin, Ding Yanmei, et al. Spatial and temporal distribution patterns and conservation status of seagrasses in the Yellow Sea and Bohai Sea[J]. Science of the Total Environment, 2025, 964: 178601. doi: 10.1016/j.scitotenv.2025.178601 [10] Uhrin A V, Turner M G. Physical drivers of seagrass spatial configuration: the role of thresholds[J]. Landscape Ecology, 2018, 33(12): 2253−2272. doi: 10.1007/s10980-018-0739-4 [11] McHenry J, Rassweiler A, Lester S E. Seagrass ecosystem services show complex spatial patterns and associations[J]. Ecosystem Services, 2023, 63: 101543. doi: 10.1016/j.ecoser.2023.101543 [12] Bai Junwu, Li Yiqiong, Chen Shiquan, et al. Long-time monitoring of seagrass beds on the east coast of Hainan Island based on remote sensing images[J]. Ecological Indicators, 2023, 157: 111272. doi: 10.1016/j.ecolind.2023.111272 [13] Kendrick G A, Holmes K W, Van Niel K P. Multi-scale spatial patterns of three seagrass species with different growth dynamics[J]. Ecography, 2008, 31(2): 191−200. doi: 10.1111/j.0906-7590.2008.5252.x [14] Sudo K, Quiros T E A L, Prathep A, et al. Distribution, temporal change, and conservation status of tropical seagrass beds in Southeast Asia: 2000–2020[J]. Frontiers in Marine Science, 2021, 8: 637722. doi: 10.3389/fmars.2021.637722 [15] 刘有才, 徐追, 董岳, 等. 曹妃甸海草床生态特征及限制因子研究[J]. 海洋开发与管理, 2024, 41(4): 97−105. doi: 10.20016/j.cnki.hykfygl.20240606.002Liu Youcai, Xu Zhui, Dong Yue, et al. Ecological characteristics and influencing factors of seagrass bed in caofeidian[J]. Ocean Development and Management, 2024, 41(4): 97−105. doi: 10.20016/j.cnki.hykfygl.20240606.002 [16] Coffer M M, Graybill D D, Whitman P J, et al. Providing a framework for seagrass mapping in United States coastal ecosystems using high spatial resolution satellite imagery[J]. Journal of Environmental Management, 2023, 337: 117669. doi: 10.1016/j.jenvman.2023.117669 [17] Meshram S G, Meshram C, Pourhosseini F A, et al. A Multi-Layer Perceptron (MLP)-Fire Fly Algorithm (FFA)-based model for sediment prediction[J]. Soft Computing, 2022, 26(2): 911−920. doi: 10.1007/s00500-021-06281-4 [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378-2007, 海洋监测规范[S]. 北京: 中国标准出版社, 2007.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB 17378-2007, The specification for marine monitoring—Part 1: general rules[S]. Beijing: Standards Press of China, 2007. [19] Miyajima T, Nakamura T, Watanabe A, et al. The grazing impact of megaherbivores on sediment accumulation and stabilization functions of seagrass meadows in a subtropical coral reef lagoon[J]. Limnology and Oceanography, 2025, 70(7): 1835−1848. doi: 10.1002/lno.70088 [20] Murphy H M, Jenkins G P, Hindell J S, et al. Response of fauna in seagrass to habitat edges, patch attributes and hydrodynamics[J]. Austral Ecology, 2010, 35(5): 535−543. doi: 10.1111/j.1442-9993.2009.02062.x [21] Saint-Etienne L, Paul S, Imbert D, et al. Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient[J]. Forest Ecology and Management, 2006, 232(1/3): 86−89. [22] Ding Jiao, Jiang Yuan, Fu Lan, et al. Impacts of land use on surface water quality in a subtropical river basin: a case study of the Dongjiang River Basin, southeastern China[J]. Water, 2015, 7(8): 4427−4445. doi: 10.3390/w7084427 [23] Huang Shan, Chen Chen, Wu Q, et al. Distribution of typical denitrifying functional genes and diversity of the nirS-encoding bacterial community related to environmental characteristics of river sediments[J]. Biogeosciences Discussions, 2011, 8(8): 5251−5280. doi: 10.5194/bgd-8-5251-2011 [24] Derakhshandeh S, Nousiainen J, Piekkari M, et al. Characterization of the sedimentation and drying processes of complex mining tailings materials using NMR[J]. Physical Chemistry Chemical Physics, 2026, 28(1): 52−66. doi: 10.1039/D5CP03347K [25] He Jie, Dai Quanhou, Xu Fengwei, et al. Variability in carbon stocks across a chronosequence of masson pine plantations and the trade-off between plant and soil systems[J]. Forests, 2021, 12(10): 1342. doi: 10.3390/f12101342 [26] Kan Guangming, Cao Guolin, Wang Jingqiang, et al. Shear wave speed of shallow seafloor sediments in the northern South China Sea and their correlations with physical parameters[J]. Earth and Space Science, 2020, 7(3): e2019EA000950. doi: 10.1029/2019EA000950 [27] Kotrocz K, Mouazen A M, Kerényi G. Numerical simulation of soil–cone penetrometer interaction using discrete element method[J]. Computers and Electronics in Agriculture, 2016, 125: 63−73. doi: 10.1016/j.compag.2016.04.023 [28] Potouroglou M, Bull J C, Krauss K W, et al. Measuring the role of seagrasses in regulating sediment surface elevation[J]. Scientific Reports, 2017, 7(1): 11917. doi: 10.1038/s41598-017-12354-y [29] James R K, Christianen M J A, Van Katwijk M M, et al. Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing[J]. Journal of Ecology, 2020, 108(5): 2025−2037. doi: 10.1111/1365-2745.13411 [30] Folmer E O, Van Der Geest M, Jansen E, et al. Seagrass–sediment feedback: an exploration using a non-recursive structural equation model[J]. Ecosystems, 2012, 15(8): 1380−1393. doi: 10.1007/s10021-012-9591-6 [31] Suykerbuyk W, Bouma T J, Govers L L, et al. Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence[J]. Ecosystems, 2016, 19(2): 296−310. doi: 10.1007/s10021-015-9932-3 [32] Meysick L, Infantes E, Rugiu L, et al. Coastal ecosystem engineers and their impact on sediment dynamics: eelgrass–bivalve interactions under wave exposure[J]. Limnology and Oceanography, 2022, 67(3): 621−633. doi: 10.1002/lno.12022 [33] Ceccherelli G, Oliva S, Pinna S, et al. Seagrass collapse due to synergistic stressors is not anticipated by phenological changes[J]. Oecologia, 2018, 186(4): 1137−1152. doi: 10.1007/s00442-018-4075-9 [34] Vieira R, Martin A, Engelen A H, et al. Interactive effects of co-occurring anthropogenic stressors on the seagrass, Zostera noltei[J]. Ecological Indicators, 2020, 109: 105780. doi: 10.1016/j.ecolind.2019.105780 [35] Pazzaglia J, Santillán-Sarmiento A, Helber S B, et al. Does warming enhance the effects of eutrophication in the seagrass Posidonia oceanica?[J]. Frontiers in Marine Science, 2020, 7: 564805. doi: 10.3389/fmars.2020.564805 [36] Beca-Carretero P, Azcárate-García T, Teichberg M, et al. Predicted warming intensifies the negative effects of nutrient increase on tropical seagrass: a physiological and fatty acid approach[J]. Ecological Indicators, 2022, 142: 109184. doi: 10.1016/j.ecolind.2022.109184 [37] Viana I G, Moreira-Saporiti A, Teichberg M. Species-specific trait responses of three tropical seagrasses to multiple stressors: the case of increasing temperature and nutrient enrichment[J]. Frontiers in Plant Science, 2020, 11: 571363. doi: 10.3389/fpls.2020.571363 [38] Ouisse V, Marchand-Jouravleff I, Fiandrino A, et al. Swinging boat moorings: spatial heterogeneous damage to eelgrass beds in a tidal ecosystem[J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106581. doi: 10.1016/j.ecss.2020.106581 [39] Holon F, Marre G, Parravicini V, et al. A predictive model based on multiple coastal anthropogenic pressures explains the degradation status of a marine ecosystem: implications for management and conservation[J]. Biological Conservation, 2018, 222: 125−135. doi: 10.1016/j.biocon.2018.04.006 [40] Maxwell P S, Eklöf J S, Van Katwijk M M, et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review[J]. Biological Reviews, 2017, 92(3): 1521−1538. doi: 10.1111/brv.12294 [41] Ostrowski A, Connolly R M, Brown C J, et al. Stressor fluctuations alter mechanisms of seagrass community responses relative to static stressors[J]. Science of the Total Environment, 2023, 900: 165865. doi: 10.1016/j.scitotenv.2023.165865 [42] Unsworth R K F, Jones B L H, Bertelli C M, et al. Ten golden rules for restoration to secure resilient and just seagrass social-ecological systems[J]. Plants, People, Planet, 2025, 7(1): 33−48. doi: 10.1002/ppp3.10560 [43] Valdez S R, Zhang Y S, Van Der Heide T, et al. Positive Ecological Interactions and the Success of Seagrass Restoration[J]. Frontiers in Marine Science, 2020, 7: 91. doi: 10.3389/fmars.2020.00091 [44] Orth R J, Lefcheck J S, McGlathery K S, et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services[J]. Science Advances, 2020, 6(41): eabc6434. doi: 10.1126/sciadv.abc6434 [45] Beheshti K M, Williams S L, Boyer K E, et al. Rapid enhancement of multiple ecosystem services following the restoration of a coastal foundation species[J]. Ecological Applications, 2022, 32(1): e02466. doi: 10.1002/eap.2466 [46] Tan Yimei, Dalby O, Kendrick G A, et al. Seagrass restoration is possible: insights and lessons from Australia and New Zealand[J]. Frontiers in Marine Science, 2020, 7: 617. doi: 10.3389/fmars.2020.00617 [47] Van Katwijk M M, Thorhaug A, Marbà N, et al. Global analysis of seagrass restoration: the importance of large-scale planting[J]. Journal of Applied Ecology, 2016, 53(2): 567−578. doi: 10.1111/1365-2664.12562 [48] Grech A, Hanert E, McKenzie L, et al. Predicting the cumulative effect of multiple disturbances on seagrass connectivity[J]. Global Change Biology, 2018, 24(7): 3093−3104. doi: 10.1111/gcb.14127 [49] O’Brien K R, Waycott M, Maxwell P, et al. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance[J]. Marine Pollution Bulletin, 2018, 134: 166−176. doi: 10.1016/j.marpolbul.2017.09.006 [50] Pazzaglia J, Reusch T B H, Terlizzi A, et al. Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival[J]. Evolutionary Applications, 2021, 14(5): 1181−1201. doi: 10.1111/eva.13212 [51] Marín-Guirao L, Bernardeau-Esteller J, Belando M D, et al. Photo-acclimatory thresholds anticipate sudden shifts in seagrass ecosystem state under reduced light conditions[J]. Marine Environmental Research, 2022, 177: 105636. doi: 10.1016/j.marenvres.2022.105636 [52] Cronau R J T, Lamers L P M, De Fouw J, et al. Combining co-introduction with patch-size optimization as a novel strategy to maximize seagrass restoration[J]. Ecological Applications, 2025, 35(4): e70055. doi: 10.1002/eap.70055 [53] Boulenger A, Chapeyroux J, Fullgrabe L, et al. Assessing Posidonia oceanica recolonisation dynamics for effective restoration designs in degraded anchoring sites[J]. Marine Pollution Bulletin, 2025, 216: 117960. doi: 10.1016/j.marpolbul.2025.117960 [54] Kendrick G A, Austin R, Ferretto G, et al. Lessons learnt from revisiting decades of seagrass restoration projects in Cockburn Sound, southwestern Australia[J]. Restoration Ecology, 2025, 33(4): e70040. doi: 10.1111/rec.70040 [55] Sinclair E A, Sherman C D H, Statton J, et al. Advances in approaches to seagrass restoration in Australia[J]. Ecological Management & Restoration, 2021, 22(1): 10−21. doi: 10.1111/emr.12452 [56] Zenone A, Giacalone V M, Martinez M, et al. Stitching up Posidonia oceanica (L.) Delile anchorage scars using beach-cast seeds: results of a six-year study[J]. Biological Conservation, 2025, 303: 111032. doi: 10.1016/j.biocon.2025.111032 [57] Pansini A, Berlino M, Mangano M C, et al. Meta-analysis reveals the effectiveness and best practices for the iconic Mediterranean seagrass restoration[J]. Science of the Total Environment, 2025, 976: 179325. doi: 10.1016/j.scitotenv.2025.179325 [58] McHenry J, Rassweiler A, Hernan G, et al. Geographic variation in organic carbon storage by seagrass beds[J]. Limnology and Oceanography, 2023, 68(6): 1256−1268. doi: 10.1002/lno.12343 -
下载: