留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间异质性分析的曹妃甸海草床密度量化分区及其形成机制

马旺 刘有才 张蒨 胡琦 陈衎 宋洪军

马旺,刘有才,张蒨,等. 基于空间异质性分析的曹妃甸海草床密度量化分区及其形成机制[J]. 海洋学报,2026,48(x):1–13
引用本文: 马旺,刘有才,张蒨,等. 基于空间异质性分析的曹妃甸海草床密度量化分区及其形成机制[J]. 海洋学报,2026,48(x):1–13
MA Wang,LIU Youcai,ZHANG Qian, et al. Density Zoning and Formation Mechanism of Seagrass Beds in Caofeidian Based on Spatial Heterogeneity Analysis[J]. Haiyang Xuebao,2026, 48(x):1–13
Citation: MA Wang,LIU Youcai,ZHANG Qian, et al. Density Zoning and Formation Mechanism of Seagrass Beds in Caofeidian Based on Spatial Heterogeneity Analysis[J]. Haiyang Xuebao,2026, 48(x):1–13

基于空间异质性分析的曹妃甸海草床密度量化分区及其形成机制

基金项目: 中央引导地方科技发展资金项目“鳗草海草床空间展布机制及固碳增汇关键技术研究”(246Z3301G);中央引导地方科技发展资金项目“河北省海草床海洋碳汇能力核算方法研究”(226Z3301G);河北省地矿局科研项目“河北省蓝碳碳汇时空格局及演化集成研究”(13000025P003294103533)。
详细信息
    作者简介:

    马旺(1986— ),男,河北省石家庄市人,高级工程师,主要研究方向为海洋环境,E-mail:skyhks@163.com

    通讯作者:

    宋洪军,副研究员,博士,主要从事海洋生态学领域研究. E-mail: songhongjun@fio.org.cn

  • 中图分类号: X22;X32

Density Zoning and Formation Mechanism of Seagrass Beds in Caofeidian Based on Spatial Heterogeneity Analysis

  • 摘要: 以我国现存面积最大的曹妃甸海草床作为研究对象,采用遥感解译、现场调查和模型解析相结合的方法,开展了曹妃甸海草床密度量化分区及其空间异质性形成机制研究。通过高分辨率卫星遥感影像解译并结合现场实地验证,获得了曹妃甸海草床“北密南疏”分布格局下三类核心分区的量化数据(密集区:面积7.31 km2,占比18.34%;中等密集区:面积10.36 km2,占比26.00%;稀疏区:面积22.18 km2,占比55.66%),整体分布呈现出斑块化嵌合分布的特征。基于现场调查获取的光照、铵盐、底质密度等10项环境资料,运用多层感知器–人工神经网络(MLP-ANN)模型解析发现,底质内摩擦角(贡献率18%)、水体温度(贡献率15%)、底质磷酸盐(贡献率15%)是影响海草床密度分区的核心因子,且累计影响占比达48%。研究表明,曹妃甸海草床的密度分区是由自然动力因素与人为活动共同作用形成的:南部区域由于潮汐海流较强,导致底质遭受冲刷,同时叠加油田勘探、航道疏浚等工程活动以及陆源污染的影响,形成了“底质扰动–营养失衡”的退化链;北部区域远离这些扰动源,并且经过生态修复,底质条件得到优化,从而为中高密度海草床区域的形成提供了支撑。本研究填补了曹妃甸海草床密度分区量化研究及其机制研究方面的不足,为渤海湾海草床的科学评估及有效修复提供了科学依据和技术范式。
  • 图  1  曹妃甸海草床调查区域及站位

    Fig.  1  Investigation Area and Stations of Seagrass Beds in Caofeidian

    图  2  海草床分布区

    Fig.  2  Seagrass Bed Distribution Area

    图  3  海草床不同密度区环境要素归一化后的变化范围(归一化前原始指标单位:粘聚力/Pa、内摩擦角/(°)、深度/m、温度/℃、光照/μmol·m–2·s–1、盐度/‰、悬浮颗粒物/mg·L–1、溶解氧/mg·L–1、pH(无量纲)、NO2/μmol·L–1、NO3/μmol·L–1、PO4/μmol·L–1、NH4/μmol·L–1、粒度/μm、密度/g·cm–3、含水率/%、容重/g·cm–3、孔隙度/%、有机质/%、全氮/%、硫化物/mg·kg–1

    Fig.  3  Environmental factors in different density zones of seagrass beds (Normalized variation range; Original index units before normalization: Cohesion/Pa, Internal friction angle/(°), Depth/m, Temperature/℃, Illumination/μmol·m–2·s–1, Salinity/‰, Suspended particles/mg·L–1, Dissolved oxygen/mg·L–1, pH (Dimensionless), NO2/μmol·L–1, NO3/μmol·L–1, PO4/μmol·L–1, NH4/μmol·L–1, Grain size/μm, Density/g·cm–3, Moisture content/%, Bulk density/g·cm–3, Porosity/%, Organic matter/%, Total nitrogen/%, Sulfide/mg·kg–1)

    图  4  海草床密度的环境要素影响占比

    Fig.  4  The proportion of environmental factors influencing seagrass bed density

    图  5  曹妃甸海草床密度分区关键影响因子与保护修复策略概念图

    Fig.  5  Conceptual diagram of key influencing factors and protection-restoration strategies for density zoning of Caofeidian seagrass beds

    表  1  调查站位信息

    Tab.  1  Survey Station Information

    站位编号 经度(°E) 纬度(°N) 所属区域类型
    B1 118.6554 39.10212 裸沙区
    B2 118.6846 39.12145
    B3 118.7207 39.12517
    B4 118.7636 39.11416
    B5 118.6902 39.07851
    B6 118.7428 39.08105
    B7 118.6825 39.04003
    B8 118.7153 39.0638
    B9 118.7233 39.02618
    S1 118.6828 39.09862 海草区
    S2 118.6687 39.10263
    S3 118.6723 39.09544
    S4 118.6758 39.08691
    S5 118.7239 39.04813
    S6 118.7092 39.05451
    S7 118.7012 39.04657
    S8 118.7158 39.10457
    S9 118.7261 39.08841
    S10 118.7015 39.1044
    S11 118.7101 39.11593
    S12 118.7308 39.10625
    下载: 导出CSV
  • [1] Shayka B F, Hesselbarth M H K, Schill S R, et al. The natural capital of seagrass beds in the Caribbean: evaluating their ecosystem services and blue carbon trade potential[J]. Biology Letters, 2023, 19(6): 20230075. doi: 10.1098/rsbl.2023.0075
    [2] Do Amaral Camara Lima M, Bergamo T F, Ward R D, et al. A review of seagrass ecosystem services: providing nature-based solutions for a changing world[J]. Hydrobiologia, 2023, 850(12): 2655−2670. doi: 10.1007/s10750-023-05244-0
    [3] Buonocore E, Donnarumma L, Appolloni L, et al. Marine natural capital and ecosystem services: an environmental accounting model[J]. Ecological Modelling, 2020, 424: 109029. doi: 10.1016/j.ecolmodel.2020.109029
    [4] Sjafrie N D M, Rahmadi P, Triyono T, et al. Monetary value of ecosystem services in unhealthy seagrass meadows in Indonesia[J]. Ecosystem Services, 2024, 70: 101668. doi: 10.1016/j.ecoser.2024.101668
    [5] Inocentes J A B, Escalante K D, Ginoo A I, et al. Assessing the economic value of a seagrass ecosystem in Southern Cebu, Philippines[J]. Biodiversitas Journal of Biological Diversity, 2025, 26(4): 1898−1912. doi: 10.13057/biodiv/d260439
    [6] Cole S G, Moksnes P O. Valuing multiple eelgrass ecosystem services in Sweden: fish production and uptake of carbon and nitrogen[J]. Frontiers in Marine Science, 2016, 2: 121. doi: 10.3389/fmars.2015.00121
    [7] Campagne C S, Salles J M, Boissery P, et al. The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits[J]. Marine Pollution Bulletin, 2015, 97(1/2): 391−400. doi: 10.1016/j.marpolbul.2015.05.061
    [8] Wallner-Hahn S, Dahlgren M, de la Torre-Castro M. Linking seagrass ecosystem services to food security: the example of southwestern Madagascar’s small-scale fisheries[J]. Ecosystem Services, 2022, 53: 101381. doi: 10.1016/j.ecoser.2021.101381
    [9] Wang Ming, Wang Weimin, Ding Yanmei, et al. Spatial and temporal distribution patterns and conservation status of seagrasses in the Yellow Sea and Bohai Sea[J]. Science of the Total Environment, 2025, 964: 178601. doi: 10.1016/j.scitotenv.2025.178601
    [10] Uhrin A V, Turner M G. Physical drivers of seagrass spatial configuration: the role of thresholds[J]. Landscape Ecology, 2018, 33(12): 2253−2272. doi: 10.1007/s10980-018-0739-4
    [11] McHenry J, Rassweiler A, Lester S E. Seagrass ecosystem services show complex spatial patterns and associations[J]. Ecosystem Services, 2023, 63: 101543. doi: 10.1016/j.ecoser.2023.101543
    [12] Bai Junwu, Li Yiqiong, Chen Shiquan, et al. Long-time monitoring of seagrass beds on the east coast of Hainan Island based on remote sensing images[J]. Ecological Indicators, 2023, 157: 111272. doi: 10.1016/j.ecolind.2023.111272
    [13] Kendrick G A, Holmes K W, Van Niel K P. Multi-scale spatial patterns of three seagrass species with different growth dynamics[J]. Ecography, 2008, 31(2): 191−200. doi: 10.1111/j.0906-7590.2008.5252.x
    [14] Sudo K, Quiros T E A L, Prathep A, et al. Distribution, temporal change, and conservation status of tropical seagrass beds in Southeast Asia: 2000–2020[J]. Frontiers in Marine Science, 2021, 8: 637722. doi: 10.3389/fmars.2021.637722
    [15] 刘有才, 徐追, 董岳, 等. 曹妃甸海草床生态特征及限制因子研究[J]. 海洋开发与管理, 2024, 41(4): 97−105. doi: 10.20016/j.cnki.hykfygl.20240606.002

    Liu Youcai, Xu Zhui, Dong Yue, et al. Ecological characteristics and influencing factors of seagrass bed in caofeidian[J]. Ocean Development and Management, 2024, 41(4): 97−105. doi: 10.20016/j.cnki.hykfygl.20240606.002
    [16] Coffer M M, Graybill D D, Whitman P J, et al. Providing a framework for seagrass mapping in United States coastal ecosystems using high spatial resolution satellite imagery[J]. Journal of Environmental Management, 2023, 337: 117669. doi: 10.1016/j.jenvman.2023.117669
    [17] Meshram S G, Meshram C, Pourhosseini F A, et al. A Multi-Layer Perceptron (MLP)-Fire Fly Algorithm (FFA)-based model for sediment prediction[J]. Soft Computing, 2022, 26(2): 911−920. doi: 10.1007/s00500-021-06281-4
    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378-2007, 海洋监测规范[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB 17378-2007, The specification for marine monitoring—Part 1: general rules[S]. Beijing: Standards Press of China, 2007.
    [19] Miyajima T, Nakamura T, Watanabe A, et al. The grazing impact of megaherbivores on sediment accumulation and stabilization functions of seagrass meadows in a subtropical coral reef lagoon[J]. Limnology and Oceanography, 2025, 70(7): 1835−1848. doi: 10.1002/lno.70088
    [20] Murphy H M, Jenkins G P, Hindell J S, et al. Response of fauna in seagrass to habitat edges, patch attributes and hydrodynamics[J]. Austral Ecology, 2010, 35(5): 535−543. doi: 10.1111/j.1442-9993.2009.02062.x
    [21] Saint-Etienne L, Paul S, Imbert D, et al. Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient[J]. Forest Ecology and Management, 2006, 232(1/3): 86−89.
    [22] Ding Jiao, Jiang Yuan, Fu Lan, et al. Impacts of land use on surface water quality in a subtropical river basin: a case study of the Dongjiang River Basin, southeastern China[J]. Water, 2015, 7(8): 4427−4445. doi: 10.3390/w7084427
    [23] Huang Shan, Chen Chen, Wu Q, et al. Distribution of typical denitrifying functional genes and diversity of the nirS-encoding bacterial community related to environmental characteristics of river sediments[J]. Biogeosciences Discussions, 2011, 8(8): 5251−5280. doi: 10.5194/bgd-8-5251-2011
    [24] Derakhshandeh S, Nousiainen J, Piekkari M, et al. Characterization of the sedimentation and drying processes of complex mining tailings materials using NMR[J]. Physical Chemistry Chemical Physics, 2026, 28(1): 52−66. doi: 10.1039/D5CP03347K
    [25] He Jie, Dai Quanhou, Xu Fengwei, et al. Variability in carbon stocks across a chronosequence of masson pine plantations and the trade-off between plant and soil systems[J]. Forests, 2021, 12(10): 1342. doi: 10.3390/f12101342
    [26] Kan Guangming, Cao Guolin, Wang Jingqiang, et al. Shear wave speed of shallow seafloor sediments in the northern South China Sea and their correlations with physical parameters[J]. Earth and Space Science, 2020, 7(3): e2019EA000950. doi: 10.1029/2019EA000950
    [27] Kotrocz K, Mouazen A M, Kerényi G. Numerical simulation of soil–cone penetrometer interaction using discrete element method[J]. Computers and Electronics in Agriculture, 2016, 125: 63−73. doi: 10.1016/j.compag.2016.04.023
    [28] Potouroglou M, Bull J C, Krauss K W, et al. Measuring the role of seagrasses in regulating sediment surface elevation[J]. Scientific Reports, 2017, 7(1): 11917. doi: 10.1038/s41598-017-12354-y
    [29] James R K, Christianen M J A, Van Katwijk M M, et al. Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing[J]. Journal of Ecology, 2020, 108(5): 2025−2037. doi: 10.1111/1365-2745.13411
    [30] Folmer E O, Van Der Geest M, Jansen E, et al. Seagrass–sediment feedback: an exploration using a non-recursive structural equation model[J]. Ecosystems, 2012, 15(8): 1380−1393. doi: 10.1007/s10021-012-9591-6
    [31] Suykerbuyk W, Bouma T J, Govers L L, et al. Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence[J]. Ecosystems, 2016, 19(2): 296−310. doi: 10.1007/s10021-015-9932-3
    [32] Meysick L, Infantes E, Rugiu L, et al. Coastal ecosystem engineers and their impact on sediment dynamics: eelgrass–bivalve interactions under wave exposure[J]. Limnology and Oceanography, 2022, 67(3): 621−633. doi: 10.1002/lno.12022
    [33] Ceccherelli G, Oliva S, Pinna S, et al. Seagrass collapse due to synergistic stressors is not anticipated by phenological changes[J]. Oecologia, 2018, 186(4): 1137−1152. doi: 10.1007/s00442-018-4075-9
    [34] Vieira R, Martin A, Engelen A H, et al. Interactive effects of co-occurring anthropogenic stressors on the seagrass, Zostera noltei[J]. Ecological Indicators, 2020, 109: 105780. doi: 10.1016/j.ecolind.2019.105780
    [35] Pazzaglia J, Santillán-Sarmiento A, Helber S B, et al. Does warming enhance the effects of eutrophication in the seagrass Posidonia oceanica?[J]. Frontiers in Marine Science, 2020, 7: 564805. doi: 10.3389/fmars.2020.564805
    [36] Beca-Carretero P, Azcárate-García T, Teichberg M, et al. Predicted warming intensifies the negative effects of nutrient increase on tropical seagrass: a physiological and fatty acid approach[J]. Ecological Indicators, 2022, 142: 109184. doi: 10.1016/j.ecolind.2022.109184
    [37] Viana I G, Moreira-Saporiti A, Teichberg M. Species-specific trait responses of three tropical seagrasses to multiple stressors: the case of increasing temperature and nutrient enrichment[J]. Frontiers in Plant Science, 2020, 11: 571363. doi: 10.3389/fpls.2020.571363
    [38] Ouisse V, Marchand-Jouravleff I, Fiandrino A, et al. Swinging boat moorings: spatial heterogeneous damage to eelgrass beds in a tidal ecosystem[J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106581. doi: 10.1016/j.ecss.2020.106581
    [39] Holon F, Marre G, Parravicini V, et al. A predictive model based on multiple coastal anthropogenic pressures explains the degradation status of a marine ecosystem: implications for management and conservation[J]. Biological Conservation, 2018, 222: 125−135. doi: 10.1016/j.biocon.2018.04.006
    [40] Maxwell P S, Eklöf J S, Van Katwijk M M, et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review[J]. Biological Reviews, 2017, 92(3): 1521−1538. doi: 10.1111/brv.12294
    [41] Ostrowski A, Connolly R M, Brown C J, et al. Stressor fluctuations alter mechanisms of seagrass community responses relative to static stressors[J]. Science of the Total Environment, 2023, 900: 165865. doi: 10.1016/j.scitotenv.2023.165865
    [42] Unsworth R K F, Jones B L H, Bertelli C M, et al. Ten golden rules for restoration to secure resilient and just seagrass social-ecological systems[J]. Plants, People, Planet, 2025, 7(1): 33−48. doi: 10.1002/ppp3.10560
    [43] Valdez S R, Zhang Y S, Van Der Heide T, et al. Positive Ecological Interactions and the Success of Seagrass Restoration[J]. Frontiers in Marine Science, 2020, 7: 91. doi: 10.3389/fmars.2020.00091
    [44] Orth R J, Lefcheck J S, McGlathery K S, et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services[J]. Science Advances, 2020, 6(41): eabc6434. doi: 10.1126/sciadv.abc6434
    [45] Beheshti K M, Williams S L, Boyer K E, et al. Rapid enhancement of multiple ecosystem services following the restoration of a coastal foundation species[J]. Ecological Applications, 2022, 32(1): e02466. doi: 10.1002/eap.2466
    [46] Tan Yimei, Dalby O, Kendrick G A, et al. Seagrass restoration is possible: insights and lessons from Australia and New Zealand[J]. Frontiers in Marine Science, 2020, 7: 617. doi: 10.3389/fmars.2020.00617
    [47] Van Katwijk M M, Thorhaug A, Marbà N, et al. Global analysis of seagrass restoration: the importance of large-scale planting[J]. Journal of Applied Ecology, 2016, 53(2): 567−578. doi: 10.1111/1365-2664.12562
    [48] Grech A, Hanert E, McKenzie L, et al. Predicting the cumulative effect of multiple disturbances on seagrass connectivity[J]. Global Change Biology, 2018, 24(7): 3093−3104. doi: 10.1111/gcb.14127
    [49] O’Brien K R, Waycott M, Maxwell P, et al. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance[J]. Marine Pollution Bulletin, 2018, 134: 166−176. doi: 10.1016/j.marpolbul.2017.09.006
    [50] Pazzaglia J, Reusch T B H, Terlizzi A, et al. Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival[J]. Evolutionary Applications, 2021, 14(5): 1181−1201. doi: 10.1111/eva.13212
    [51] Marín-Guirao L, Bernardeau-Esteller J, Belando M D, et al. Photo-acclimatory thresholds anticipate sudden shifts in seagrass ecosystem state under reduced light conditions[J]. Marine Environmental Research, 2022, 177: 105636. doi: 10.1016/j.marenvres.2022.105636
    [52] Cronau R J T, Lamers L P M, De Fouw J, et al. Combining co-introduction with patch-size optimization as a novel strategy to maximize seagrass restoration[J]. Ecological Applications, 2025, 35(4): e70055. doi: 10.1002/eap.70055
    [53] Boulenger A, Chapeyroux J, Fullgrabe L, et al. Assessing Posidonia oceanica recolonisation dynamics for effective restoration designs in degraded anchoring sites[J]. Marine Pollution Bulletin, 2025, 216: 117960. doi: 10.1016/j.marpolbul.2025.117960
    [54] Kendrick G A, Austin R, Ferretto G, et al. Lessons learnt from revisiting decades of seagrass restoration projects in Cockburn Sound, southwestern Australia[J]. Restoration Ecology, 2025, 33(4): e70040. doi: 10.1111/rec.70040
    [55] Sinclair E A, Sherman C D H, Statton J, et al. Advances in approaches to seagrass restoration in Australia[J]. Ecological Management & Restoration, 2021, 22(1): 10−21. doi: 10.1111/emr.12452
    [56] Zenone A, Giacalone V M, Martinez M, et al. Stitching up Posidonia oceanica (L.) Delile anchorage scars using beach-cast seeds: results of a six-year study[J]. Biological Conservation, 2025, 303: 111032. doi: 10.1016/j.biocon.2025.111032
    [57] Pansini A, Berlino M, Mangano M C, et al. Meta-analysis reveals the effectiveness and best practices for the iconic Mediterranean seagrass restoration[J]. Science of the Total Environment, 2025, 976: 179325. doi: 10.1016/j.scitotenv.2025.179325
    [58] McHenry J, Rassweiler A, Hernan G, et al. Geographic variation in organic carbon storage by seagrass beds[J]. Limnology and Oceanography, 2023, 68(6): 1256−1268. doi: 10.1002/lno.12343
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-19
  • 修回日期:  2026-01-26
  • 网络出版日期:  2026-02-13

目录

    /

    返回文章
    返回