留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于浮标观测与数值模拟的2023—2025年渤海冬季结冰期海浪特征分析

吴鸿轩 岳澈 李静凯 马昕 马也驰 李锐

吴鸿轩,岳澈,李静凯,等. 基于浮标观测与数值模拟的2023—2025年渤海冬季结冰期海浪特征分析[J]. 海洋学报,2026,48(x):1–11
引用本文: 吴鸿轩,岳澈,李静凯,等. 基于浮标观测与数值模拟的2023—2025年渤海冬季结冰期海浪特征分析[J]. 海洋学报,2026,48(x):1–11
Wu Hongxuan,Yue Che,Li Jingkai, et al. The wave feature analysis of Bohai Sea in winter of 2023-2025 based on buoy measurements and numeric modeling[J]. Haiyang Xuebao,2026, 48(x):1–11
Citation: Wu Hongxuan,Yue Che,Li Jingkai, et al. The wave feature analysis of Bohai Sea in winter of 2023-2025 based on buoy measurements and numeric modeling[J]. Haiyang Xuebao,2026, 48(x):1–11

基于浮标观测与数值模拟的2023—2025年渤海冬季结冰期海浪特征分析

基金项目: 中央高校基本科研业务项目(202262005)。
详细信息
    作者简介:

    吴鸿轩(2000—),男,硕士,福建省宁德市人,从事海浪数值模拟研究。Email:2570792097@qq.com

    通讯作者:

    李静凯,男,副教授,主要研究海浪数值模拟、浪-冰相互作用及浪-流相互作用。Email:ljk1105@ouc.edu.cn

The wave feature analysis of Bohai Sea in winter of 2023-2025 based on buoy measurements and numeric modeling

  • 摘要: 本文基于2023—2025年冬季投放在渤海辽东湾的共3个小型波浪浮标的观测数据及海浪数值模式对渤海冬季结冰期的海浪特征进行了分析。观测数据的统计结果表明,位于渤海中部的2个浮标测得平均有效波高约为1 m,平均有效波周期约为4到5 s。锚定于辽东湾的浮标观测显示海冰对海浪影响显著,当海冰存在时,平均有效波高和有效波周期为0.2 m和9 s,比无冰情况下分别减小和增大了54%和98%,而且海冰的存在还可能导致谱峰波向略偏离主导风向。从数值模拟的角度来看,相较于不考虑海冰的方案,通过在SWAN模式中植入考虑冰厚的冰−浪参数化方案,可降低波高模拟误差33%。另外,本文还对比了两种经典风输入项方案Komen与ST6对渤海冬季海浪的模拟效果,两种方案的结果总体上均与浮标观测的有效波高吻合较好,误差水平相当。本文的研究基于观测数据,进一步丰富了人们对渤海冬季结冰期海浪特征的认知。
  • 图  1  浮标轨迹示意图。圆点代表浮标运动轨迹,星形代表浮标投放位置,背景色为(a)2023年12月至2024年2月期间,(b)2024年12月至2025年2月期间的平均海冰密集度

    Fig.  1  Tracks of buoys. The red dots are the tracks of drifting buoys. The stars represent the location where the buoys deployed. Background colors represent the sea ice concentration from (a) 1 December 2023 to 30 February 2024 (b) 1 December 2024 to 29 February 2025

    图  2  WB1与WB2的(a)有效波高(b)有效波周期(c)对应海面10m风速的时间序列

    Fig.  2  Time variation of (a) significant wave height, (b) significant period and (c) corresponding wind speed of WB1 and WB2

    图  3  2024年1月4日23时和2024年1月2日14时海浪的(a)一维频谱与(b)(c)二维频率方向谱,其中波向为去向

    Fig.  3  (a) Frequency spectra and (b) (c) directional spectra of waves in 4 January 2024, 23 h and 2 January 2024, 14 h, respectively. The wave direction refers to the direction of propagation

    图  4  (a)WB2浮标测量的海浪玫瑰图,(b)对应的风速玫瑰图,方向均为去向

    Fig.  4  (a) Wave rose and (b) wind rose figures recorded by WB2. The directions of them are both propagating directions

    图  5  WB3位置处(a)有效波高(b)有效波周期(c)海面10m风速(d)海冰密集度的时间序列。青色背景代表浮标位置有海冰覆盖的时间段。

    Fig.  5  Time variations of (a) significant wave height, (b) significant wave period, (c) corresponding 10-m wind speed and (d) ice concentration of WB3. Cyan backgrounds represent the periods in which the buoy was in ice region

    图  6  WB3位置处海浪玫瑰图和10 m风速玫瑰图,方向均为去向。(a)(b)为有冰时期,(c)(d)为无冰时期

    Fig.  6  (a) Wave rose and (b) wind rose figures recorded by WB 3 when the buoy was in the regions with ice. The directions are both propagating directions. (c) and (d) are the same as (a) and (b), but in the periods when the buoy was in the regions without ice

    图  7  WB3处,不同冰−浪方案下的SWAN模式模拟波高与观测值对比。灰色圆点代表浮标观测的有效波高,红色,橙色和蓝色实线分别代表IC0、IC4M2和M18方案的结果,青色背景代表MASAM2产品海冰覆盖时段。

    Fig.  7  Comparison of simulated significant wave height from different wave-ice parameterizations at the WB3 location. The grey dots, red, orange and blue lines represent the results of buoy measurements, IC0, IC4M2 and M18 schemes. Cyan backgrounds represent the period in which the buoy was in ice region.

    图  8  观测有效波高与SWAN模拟的有效波高的时间序列对比图(a)2023年12月25日至2024年2月5日,WB1观测结果(b)2024年1月28日至2024年2月21日,WB2观测结果。灰色圆点代表浮标观测的有效波高,红色和蓝色实线分别代表采用ST6方案和Komen方案的SWAN模拟结果

    Fig.  8  Time series comparisons of observed wave heights and simulated wave heights during (a) 25 December 2023 to 05 February 2024 along the WB1 tracks; (b) 28 January 2024 to 21 February 2024 along the WB2 tracks. The grey dots, red and blue lines represent the results of observations, SWAN model (ST6) and SWAN model (Komen), respectively

    图  9  WB3观测有效波高与SWAN模拟的有效波高的时间序列对比图。灰色代表浮标观测的有效波高,红色和蓝色实线分别代表采用ST6方案和Komen方案的SWAN模拟结果,青色背景代表海冰覆盖时段

    Fig.  9  Time series comparisons of observed wave heights and simulated wave heights of WB3. The grey, red and blue lines represent the results of observations, SWAN model (ST6) and SWAN model (Komen), respectively. Cyan backgrounds represent the period in which the buoy was in ice region

    图  10  SWAN模拟的冬季渤海平均有效波高分布(a)2024年1月1日至2024年1月31日(b)2025年1月1日至2025年1月31日

    Fig.  10  Simulated average significant wave height in Bohai Sea from (a) 1 January 2024 to 31 January 2024; (b) 1 January 2025 to 31 January 2025

    表  1  浮标投放信息

    Tab.  1  Information of drifting buoys

    浮标编号投放日期投放位置持续时间/d观测间隔/h
    WB12023年12月25日121.3°E, 40.4°N740.5
    WB22024年01月28日121.2°E, 39.4°N240.5
    WB32024年12月28日121.5°E, 40.6°N410.5
    下载: 导出CSV

    表  2  浮标观测波高极值对应的海况

    Tab.  2  Sea condition in buoy location when high wave heights are observed

    观测时间浮标浮标位置波高(m)风速(m/s)海冰状况
    1月10日14时WB1121.3°E,40.4°N3.212.7临近冰区
    2月01日02时WB2120.6°E,39.6°N2.513.3临近冰区
    2月20日00时WB2119.3°E,38.9°N3.615.2远离冰区
    下载: 导出CSV

    表  3  SWAN源项设置

    Tab.  3  The source terms used in the SWAN model

    源项参数化方案
    风输入项Komen[27]和ST6[28]方案
    白冠耗散项Komen方案[29]
    三波相互作用项LTA方案[30]
    四波相互作用项DIA方案[31]
    底摩擦项JONSWAP方案[32]
    深度诱导破碎项Battjes和Janssen方案[33]
    海冰耗散项IC4M2[25]与M18[26]方案
    下载: 导出CSV

    表  4  波浪浮标对应的模拟结果与观测结果的平均误差与均方根误差(单位:m)

    Tab.  4  Mean deviation (MD) and root mean square error (RMSE) between observations and simulations (Unit: m)

    方案名 IC0 IC4M2 M18
    MD RMSE MD RMSE MD RMSE
    WB1 0.34 0.61 0.25 0.57 0.01 0.45
    WB2 0.45 0.60 0.36 0.51 0.20 0.34
    WB3 0.17 0.45 0.01 0.40 −0.01 0.34
    下载: 导出CSV

    表  5  不同风输入项对应模拟结果与观测的平均误差与均方根误差(单位:m)

    Tab.  5  Mean deviation (MD) and root mean square error (RMSE) between observations and simulations of different wind-input terms (Unit: m)

    方案名 Komen ST6
    MD RMSE MD RMSE
    WB1 0.01 0.45 −0.01 0.46
    WB2 0.20 0.34 0.19 0.32
    WB3 −0.01 0.34 −0.01 0.35
    WB3有冰 −0.09 0.30 −0.08 0.32
    WB3无冰 0.05 0.36 0.03 0.37
    下载: 导出CSV
  • [1] 岳淑红, 李广雪. 塘沽近海海域海浪的基本特征[J]. 黄渤海海洋, 1997(1): 70−75.

    Yue Shuhong, Li Guangxue. General characteristics of the wave of Tanggu[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1997(1): 70−75.
    [2] 孙连成. 渤海湾西部海域波浪特征分析[J]. 黄渤海海洋, 1991, 9(3): 50−58.

    Sun Liancheng. Analysis of wave characteristics of the west offshore area of the Bohai Bay[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1991, 9(3): 50−58.
    [3] Miao Qingsheng, Yang Jinkun, Wang Zhifeng, et al. A study on wave climate variability along the nearshore regions of Bohai Sea based on long term observation data[J]. Ocean Engineering, 2024, 304: 117947. doi: 10.1016/j.oceaneng.2024.117947
    [4] 龙强, 王锋, 项青霞, 等. 唐山南部近海海浪特征及风浪预报方法分析研究[J]. 海洋预报, 2016, 33(3): 27−33.

    Long Qiang, Wang Feng, Xiang Qingxia, et al. Research about wave features and wind wave height forecasting methods of Tangshan southern coastal area[J]. Marine Forecasts, 2016, 33(3): 27−33.
    [5] Wang Juanjuan, Li Benxia, Gao Zhiyi, et al. Comparison of ECMWF significant wave height forecasts in the China sea with buoy data[J]. Weather and Forecasting, 2019, 34(6): 1693−1704. doi: 10.1175/WAF-D-19-0043.1
    [6] 王广运, 赵进平, 宋如轼. 利用卫星微波遥感资料推算波浪极值[J]. 港工技术, 2000(1): 11−18.

    Wang Guangyun, Zhao Jinping, Song Rushi. Sea-wave extreme estimation using satellite macro-wave remote-sense data[J]. Port Engineering Technology, 2000(1): 11−18.
    [7] 尹宝树, 王涛, 范顺庭. YW-SWP海浪数值预报模式及其应用[J]. 海洋与湖沼, 1994, 25(3): 293−300.

    Yin Baoshu, Wang Tao, Fan Shunting. YW-SWP sea wave numerical prediction model and its application[J]. Oceanologia et Limnologia Sinica, 1994, 25(3): 293−300.
    [8] 李文博, 李锐, 王彬, 等. 不同海浪数值预报产品在渤海和黄海的预报水平评估[J]. 海洋预报, 2023, 40(4): 10−21.

    Li Wenbo, Li Rui, Wang Bin, et al. Evaluation of different wave numerical forecast products in the Bohai Sea and the Yellow Sea[J]. Marine Forecasts, 2023, 40(4): 10−21.
    [9] 黄必桂. 渤海海浪的数值模拟和涌浪对风浪影响的研究[D]. 青岛: 中国海洋大学, 2009.

    Huang Bigui. Numerical simulation of waves in Bohai Sea and research on the influence of swells on wind waves[D]. Qingdao: Ocean University of China, 2009.
    [10] 管长龙, 李静凯, 刘庆翔. 海冰对海浪影响研究综述[J]. 海洋科学进展, 2022, 40(4): 594−604.

    Guan Changlong, Li Jingkai, Liu Qingxiang. A review on the effect of sea ice on ocean waves[J]. Advances in Marine Science, 2022, 40(4): 594−604.
    [11] 刘东昂, 管长龙, 孙建. 渤海WAVEWATCH III®不同海冰模型的模拟结果比较[J]. 中国海洋大学学报(自然科学版), 2020, 50(6): 12−18.

    Liu Dong’ang, Guan Changlong, Sun Jian. A comparison of ice modules in WAVEWATCH III® in the Bohai Sea[J]. Periodical of Ocean University of China, 2020, 50(6): 12−18.
    [12] Yue Che, Li Jingkai, Guan Changlong, et al. Surface wave simulation during winter with sea ice in the Bohai Sea[J]. Journal of Oceanology and Limnology, 2019, 37(6): 1857−1867. doi: 10.1007/s00343-019-8253-3
    [13] 任国庆, 程天宜, 马昕, 等. 漂流式波浪浮标及其在西北太平洋的观测应用[J]. 海洋技术学报, 2021, 40(4): 37−44.

    Ren Guoqing, Cheng Tianyi, Ma Xin, et al. Drifting wave buoys and their observational applications in the Northwest Pacific[J]. Journal of Ocean Technology, 2021, 40(4): 37−44.
    [14] Cheng Tianyi, Chen Zhaohui, Li Jingkai, et al. Surface wave height regulated by ocean currents: an observational perspective[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2022, 179: 103666. doi: 10.1016/j.dsr.2021.103666
    [15] 党超群, 李明兵, 王斌, 等. 基于MEMS运动传感器的波浪谱浮子设计研究[J]. 海洋测绘, 2024, 44(5): 57−61.

    Dang Chaoqun, Li Mingbing, Wang Bin, et al. Research on wave spectra float based on MEMS motion sensor[J]. Hydrographic Surveying and Charting, 2024, 44(5): 57−61.
    [16] 祁祥礼, 郑向阳, 谌业良. 渤海湾中部波浪特征分析[J]. 水道港口, 2018, 39(3): 288−293.

    Qi Xiangli, Zheng Xiangyang, Shen Yeliang. Analysis of wave characteristic in the middle part of the Bohai Bay[J]. Journal of Waterway and Harbor, 2018, 39(3): 288−293.
    [17] Kuik A J, van Vledder G P, Holthuijsen L H. A method for the routine analysis of pitch-and-roll buoy wave data[J]. Journal of Physical Oceanography, 1988, 18(7): 1020−1034. doi: 10.1175/1520-0485(1988)018<1020:amftra>2.0.co;2
    [18] Meylan M H, Bennetts L G, Kohout A L. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone[J]. Geophysical Research Letters, 2014, 41(14): 5046−5051. doi: 10.1002/2014GL060809
    [19] Rogers W E, Thomson J, Shen H H, et al. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 7991−8007. doi: 10.1002/2016JC012251
    [20] 冯士筰. 渤海环境动力学导论[M]. 北京: 科学出版社, 2007. (查阅网上资料, 未找到本条文献英文信息, 请确认
    [21] Squire V A. Of ocean waves and sea-ice revisited[J]. Cold Regions Science and Technology, 2007, 49(2): 110−133. doi: 10.1016/j.coldregions.2007.04.007
    [22] Group T W. The WAM model—a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775−1810. doi: 10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2
    [23] The WAVEWATCH III ® Development Group. User Manual and System Documentation of WAVEWATCH III® version 5.16[R]. College Park: The WAVEWATCH III ® Development Group, 2016.
    [24] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649−7666. doi: 10.1029/98JC02622
    [25] Collins C O, Rogers W E, Lund B. An investigation into the dispersion of ocean surface waves in sea ice[J]. Ocean Dynamics, 2017, 67(2): 263−280. doi: 10.1007/s10236-016-1021-4
    [26] Meylan M H, Bennetts L G, Mosig J E M, et al. Dispersion relations, power laws, and energy loss for waves in the marginal ice zone[J]. Journal of Geophysical Research: Oceans, 2018, 123(5): 3322−3335. doi: 10.1002/2018JC013776
    [27] Komen G J, Cavaleri L, Donelan M, et al. Dynamics and Modelling of Ocean Waves[M]. Cambridge: Cambridge University Press, 1994.
    [28] Rogers W E, Babanin A V, Wang D W. Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: description and simple calculations[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(9): 1329−1346. doi: 10.1175/JTECH-D-11-00092.1
    [29] Komen G J, Hasselmann K, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14(8): 1271−1285.
    [30] Eldeberky Y, Battjes J A. Spectral modeling of wave breaking: application to Boussinesq equations[J]. Journal of Geophysical Research: Oceans, 1996, 101(C1): 1253−1264. doi: 10.1029/95JC03219
    [31] Hasselmann S, Hasselmann K, Allender J H, et al. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: parameterizations of the nonlinear energy transfer for application in wave models[J]. Journal of Physical Oceanography, 1985, 15(11): 1378−1391. doi: 10.1175/1520-0485(1985)015<1378:capotn>2.0.co;2
    [32] Hasselmann K F, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), F, 1973[C]. (查阅网上资料, 未找到本条文献信息, 请确认)
    [33] Battjes J A, Janssen J P F M. Energy loss and set-up due to breaking of random waves[C]// 16th International Conference on Coastal Engineering. Hamburg: American Society of Civil Engineers, 569−587.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-20
  • 录用日期:  2026-02-11
  • 修回日期:  2026-01-29
  • 网络出版日期:  2026-02-13

目录

    /

    返回文章
    返回