留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分3号星载合成孔径雷达极地海冰自动检测方法研究

郑敏薇 李晓明 任永政

郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113-124. doi: 10.3969/j.issn.0253-4193.2018.09.010
引用本文: 郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113-124. doi: 10.3969/j.issn.0253-4193.2018.09.010
Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113-124. doi: 10.3969/j.issn.0253-4193.2018.09.010
Citation: Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113-124. doi: 10.3969/j.issn.0253-4193.2018.09.010

高分3号星载合成孔径雷达极地海冰自动检测方法研究

doi: 10.3969/j.issn.0253-4193.2018.09.010
基金项目: 国家高分辨率对地观测系统重大专项(41-Y20A14-9001-15/16)。

The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions

  • 摘要: 随着全球变暖等一系列气候变化的发生,极地海冰成为人们日益关注的焦点。由于不受光线和云雨影响,合成孔径雷达(SAR)可以进行全天时全天候的观测。高分3号是我国高分系列卫星中的一颗星载合成孔径雷达成像卫星,具有多种成像模式,可以在全球获取SAR数据。全天时全天候的工作特性和高空间分辨率的优势,使得高分3号星载SAR在极地海冰遥感监测中发挥重要的作用。本文基于高分3号水平-垂直(Horizontal-Vertical,HV)极化数据,提出了一种基于支持向量机的无需人工干预的海冰检测方法,实现海水和海冰的自动分离。利用该方法得到的海冰和海水分离结果同辅以人工解译的半监督分类结果相比较为吻合,为高分3号服务于极区海冰监测奠定了良好的基础。
  • Magnusdottir G, Deser C, Saravanan R. The effects of North Atlantic SST and sea iceanomalies on the winter circulation in CCM3. Part I:Main features and storm trackcharacteristics of the response[J]. Journal of Climate, 2004, 17(5), 857-876.
    Dong B W, Sutton R. T. Adjustment of the coupled ocean-atmosphere system to a suddenchange in the Thermohaline Circulation[J]. Geophysical Research Letters, 2002, 29(15):18-1-18-4.
    Wakabayashi H, Mori Y, Nakamura K. Sea ice detection in the sea of Okhotsk using PALSAR and MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3):1516-1523.
    Zhang X, Dierking W, Zhang J, et al. A polarimetric decomposition method for ice in the Bohai Sea using C-band PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(1):47-66.
    Hollands T, Linow S, Dierking W. Reliability measures for sea ice motion retrieval from synthetic aperture radar images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):67-75.
    Zakhvatkina N, Korosov A, Muckenhuber S, et al. Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images[J]. The Cryosphere, 2016, 11:33-46.
    张晰, 张杰, 纪永刚. 基于纹理特征分析的辽东湾SAR影像海冰检测[J]. 海洋科学进展, 2008,26(3):386-393. Zhang Xi, Zhang Jie, Ji Yonggang. Sea ice detection of Liaodong Bay SAR images based on texture feature analysis[J]. Advances in Marine Science, 2008, 26(3):386-393.
    Deng H, Clausi D A. Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):528-538.
    Leigh S, Wang Z J, Clausi D A. Automated ice-water classification using dual polarization SAR satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5529-5539.
    Wakabayashi H, Mori Y, Nakamura K. Sea ice detection in the sea of Okhotsk using PALSAR and MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 6(3):1516-1523.
    Karvonen J, Simila M, Makynen M. Open water detection from Baltic Sea ice RADARSAT-1 SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3):275-279.
    Abreu R D, Flett D, Scheuchl B, et al. Operational sea ice monitoring with RADARSAT-2-A glimpse into the future[J]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 2(1):1308-1310.
    Partington K, Flach J D, Barber D, et al. Dual-polarization C-band radar observations of sea ice in the Amundsen Gulf[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6):2685-2691.
    Nghiem S, Bertoia C. Study of multi-polarization C-band backscatter signatures for Arctic sea ice mapping with future satellite SAR:Ice and icebergs[J]. Canadian Journal of Remote Sensing, 2001, 27(5):387-402.
    Sandven S, Johannessen O M, Miles M W, et al. Barents Sea seasonal ice zone features and processes from ERS-1 synthetic aperture radar:Seasonal ice zone experiment 1992[J]. Journal of Geophysical Research:Oceans banner, 1999, 104(C7):15843-15857.
    Soh L K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2):780-795.
    Barber D G, Shokr M E, Fernandez R A, et al. A comparison of second order classifiers for SAR sea ice discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1993, 59(9):c1397-1408.
    Zakhvatkina N, Alexandrov V, Johannessen O, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5), 2587-2600.
    Liu H, Guo H, Zhang L. SVM-Based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4), 1601-1613.
    杨劲松, 任林, 王隽. 高分三号卫星对海浪的首次定量遥感[J]. 海洋与湖沼, 2017, 48(2):207-209. Yang Jinsong, Ren Lin, Wang Jun. The first time quantitative remote sensing of ocean surface waves by GaoFen-3 satellite[J]. Oceanologia et Limnologia Sinica, 2017, 48(2):207-209.
    王文煜,谢春华,袁新哲,等. 高分三号卫星ATI模式海表面流场测量性能分析[J]. 航天器工程,2017,26(1):132-139. Wang Wenyu, Xie Chunhua, Yuan Xinzhi, et al. Performance analysis of sea surface current measurements by GF-3 satellite ATI mode[J]. Spacecraft Engineering, 2017, 26(1):132-139.
    杨劲松, 王隽, 任林. 高分三号卫星对海洋内波的首次定量遥感[J]. 海洋学报, 2017, 39(1):148. Yang Jinsong, Wang Jun, Ren Lin. The first quantitative remote sensing of internal waves by GaoFen-3 satellite[J]. Haiyang Xuebao, 2017, 39(1):148.
    Zakhvatkina N, Alexandrov V, Johannessen O, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2587-2600.
    Clausi D. An analysis of co-occurrence texture statistics as a function of grey level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1):45-62.
    Ulaby F T, Kouyate F, Brisco B, et al. Textural information in SARImages[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2):235-2245.
    Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66.
    Chang C C, Lin C L. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 27(2):1-27.
  • 加载中
计量
  • 文章访问数:  731
  • HTML全文浏览量:  48
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 修回日期:  2017-10-23

目录

    /

    返回文章
    返回