留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于退化类型感知的异质性水下图像质量增强策略

崔晓东 朱秋伟 杨子睿 樊妙 朱正任 王晓明 阳凡林

崔晓东,朱秋伟,杨子睿,等. 基于退化类型感知的异质性水下图像质量增强策略[J]. 海洋学报,2026,48(x):1–16
引用本文: 崔晓东,朱秋伟,杨子睿,等. 基于退化类型感知的异质性水下图像质量增强策略[J]. 海洋学报,2026,48(x):1–16
Cui Xiaodong,Zhu Qiuwei,Yang Zirui, et al. Underwater image enhancement based on degradation type awareness[J]. Haiyang Xuebao,2026, 48(x):1–16
Citation: Cui Xiaodong,Zhu Qiuwei,Yang Zirui, et al. Underwater image enhancement based on degradation type awareness[J]. Haiyang Xuebao,2026, 48(x):1–16

基于退化类型感知的异质性水下图像质量增强策略

基金项目: 中国博士后科学基金(2023M733686),国家自然科学基金资助项目(42206200,42576193),山东省自然科学基金资助项目(ZR2022QD043)。
详细信息
    作者简介:

    崔晓东(1992—),男,山东省青岛市人,副教授,主要从事海底与海岸带分类、水下目标监测与识别研究。E-mail:cuixiaodong@sdust.edu.cn

    通讯作者:

    樊妙,女,高级工程师,主要从事海洋GIS、海底数据处理方法研究。E-mail: fm_nmdis@163.com

Underwater image enhancement based on degradation type awareness

  • 摘要: 高质量的水下光学影像是海底场景数字孪生、底栖生境保护、海底矿产资源探测和海底未知现象理解等任务的重要依托。然而,受复杂水体环境、光照条件等因素的影响,水下光学影像存在颜色失真、细节模糊、对比度低等退化问题。现有水下图像增强方法多聚焦于增强算法本身的优化,缺乏对不同退化类型图像的溯源、分类与分级等系统性分析机制。为此,针对水下光学图像成像环境的复杂性和异质性,本文提出一种顾及退化类型的图像质量增强策略。首先,构建了水下图像退化类型感知网络用于识别水下雾化模糊图像,准确率达到97%,对光照退化类型亦具有较高的区分能力。其次,针对识别出的水下雾化图像,基于真实水下图像色偏值的分布统计,设计自适应颜色校正方法,有效恢复不同程度的颜色衰减。最后,引入分块索引策略来获取更加精确的背景光估计值,并结合水下暗通道先验进一步解决水下图像的雾化模糊问题。在UIEB、RUIE等多个真实水下图像数据集上的实验结果表明,与具有代表性的水下图像增强方法相比,PSNR、SSIM指标分别提升22.17%、4.5%。
  • 图  1  所提方法流程图

    Fig.  1  Flowchart of the proposed method

    图  2  不同退化类型图像及其像素分布

    Fig.  2  Different types of degraded images and their pixel distributions

    图  3  图像的多模态特征

    Fig.  3  Multimodal features of images

    图  4  UIDPNet结构

    Fig.  4  UIDPNet structure

    图  5  水下图像的色偏值分布

    Fig.  5  Distribution of color cast values in underwater images

    图  6  不同程度的颜色衰减对应的色偏值范围以及$ \alpha $最优补偿数值

    Fig.  6  The range of color decay corresponding to different degrees of color shift and the optimal compensation value for $ \alpha $

    图  7  精细化背景光估计流程图

    Fig.  7  Refined background light estimation flowchart

    图  8  UIDPNet测试结果

    Fig.  8  UIDPNet test results

    图  9  退化类别判别错误图像

    Fig.  9  Degradation category misclassification image

    图  10  水下不同退化类型图像使用同一增强算法效果

    Fig.  10  Effectiveness of the same enhancement algorithm on underwater images with different degradation types

    图  11  颜色还原度验证结果展示

    Fig.  11  Color restoration verification results display

    图  12  不同程度颜色退化图像的FDUM平均得分随α取值的变化情况

    Fig.  12  The variation of the average FDUM score for images with different degrees of color degradation in relation to the value of α

    图  13  α取值对图像主客观质量的影响示意

    Fig.  13  Impact of α value on the subjective and objective quality of images

    图  14  不同背景光估计方法的结果展示

    Fig.  14  Results demonstration of different background light estimation methods

    图  15  综合数据集上水下图像增强结果比较

    Fig.  15  Comparison of underwater image enhancement results on the comprehensive dataset

    图  16  UIEB数据集上水下图像增强结果比较

    Fig.  16  Comparison of underwater image enhancement results on the UIEB dataset

    图  17  中国近海水下图像增强结果比较

    Fig.  17  Comparison of underwater image enhancement results in China’s coastal water

    图  18  水下图像分割、特征点检测的应用实例结果

    Fig.  18  Application examples and results of underwater image segmentation and feature point detection

    表  1  MTD数据集内容组成

    Tab.  1  Composition of the MTD dataset

    退化类型 数量
    雾化模糊 328
    非均匀光照 177
    低光照 323
    下载: 导出CSV

    表  2  UIDPNet特征图参数表

    Tab.  2  UIDPNet feature map parameter table

    层级 操作 输入尺寸 输出尺寸
    特征图像提取 输入图像 H*W*3 224*244*8
    卷积块1 ConvBlock 224*244*8 224*244*64
    ConvBlock 224*244*64
    最大池化 112*112*64
    注意力模块 112*112*64
    卷积块2 ConvBlock 112*112*128
    ConvBlock 112*112*128
    最大池化 56*56*128
    注意力模块 56*56*128
    卷积块3 ConvBlock 56*56*256
    ConvBlock 56*56*256
    ConvBlock
    最大池化 28*28*256
    注意力模块 28*28*256
    卷积块4 ConvBlock 28*28*512
    ConvBlock 28*28*512
    ConvBlock
    最大池化 14*14*512
    注意力模块 14*14*512
    全局平均池化 1*1*512
    全连接块(含dropout) 全连接层 1*1*512 1*1*256
    全连接层 1*1*256 1*1*128
    全连接层 1*1*128 1*1*C
    下载: 导出CSV

    表  3  不同图像尺寸与迭代阈值下的耗时统计

    Tab.  3  Runtime statistics for different image sizes and iteration thresholds

    图像尺寸 迭代阈值 耗时(S)
    400*300 500 0.334
    1000 0.345
    1500 0.329
    640*480 500 0.530
    1000 0.527
    1500 0.541
    960*1200 500 1.218
    1000 1.238
    1500 1.206
    下载: 导出CSV

    表  4  无参考评价指标定量分析结果

    Tab.  4  Quantitative analysis results of non-reference evaluation indicators

    Methods Ancuti et al. MLLE CBLA Haze-Line TACL WaterNet 本文方法
    FDUM 0.3422 0.7184 0.6214 0.6026 0.5285 0.4260 0.6674
    UIQM 0.4203 1.1219 0.8873 1.2637 0.6207 0.6387 1.3410
    UICQE 0.5436 0.6030 0.5328 0.5439 0.6116 0.5861 0.6074
    下载: 导出CSV

    表  5  全参考评价指标定量分析结果

    Tab.  5  Quantitative analysis results of comprehensive evaluation indicators

    Methods Ancuti et al. MLLE CBLA Haze-Line TACL WaterNet 本文方法
    PSNR 15.8420 19.0382 16.2547 18.2366 18.9886 13.8584 23.2598
    SSIM 0.7696 0.6891 0.7218 0.6468 0.7852 0.7688 0.8207
    PCQI 0.6174 0.9847 0.7736 0.6899 0.9434 0.6820 0.9684
    下载: 导出CSV

    表  6  中国近海数据定量分析结果

    Tab.  6  Quantitative analysis results of China’s coastal water

    Methods Ancuti et al. MLLE CBLA Haze-Line TACL WaterNet 本文方法
    FDUM 0.1807 0.5797 0.4126 0.3195 0.4889 0.4912 0.6755
    UIQM 0.3534 3.3259 2.7129 3.3713 3.4006 2.6881 3.4955
    UICQE 0.1332 0.1945 0.2316 0.1295 0.2014 0.1975 0.2288
    下载: 导出CSV
  • [1] Cao Yu, Cui Xiaodong, Gan Mingyi, et al. MAL-YOLO: a lightweight algorithm for target detection in side-scan sonar images based on multi-scale feature fusion and attention mechanism[J]. International Journal of Digital Earth, 2024, 17(1): 2398050. doi: 10.1080/17538947.2024.2398050
    [2] Cornwall W. Alvin, the iconic submersible, plunges deeper than ever[J]. Science, 2024, 384(6698): 833−834.
    [3] Cui Xiaodong, Yang Fanlin, Wu Ziyin, et al. Deep-sea sediment mixed pixel decomposition based on multibeam backscatter intensity segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4504015. doi: 10.1109/tgrs.2021.3090450
    [4] Zhao Shengya, Ye Xiufen, Guo Shuxiang, et al. Deep learning-based detection of deep-sea hydrothermal polymetallic sulfides, plume, and their biological communities[C]//2024 IEEE International Conference on Mechatronics and Automation (ICMA). Tianjin, China: IEEE, 2024: 644−649.
    [5] 徐丹, 路航, 史金龙, 等. 基于光照先验的半监督图像增强网络在水下目标检测中的应用[J]. 海洋学报, 2025, 47(8): 69−81. doi: 10.12284/hyxb2025077

    Xu Dan, Lu Hang, Shi Jinlong, et al. Application of a semi-supervised image enhancement network based on lighting priors in underwater object detection[J]. Haiyang Xuebao, 2025, 47(8): 69−81. doi: 10.12284/hyxb2025077
    [6] 付青青, 景春雷, 裴彦良, 等. 基于非锐化掩模引导滤波的水下图像细节增强算法研究[J]. 海洋学报, 2020, 42(7): 130−138.

    Fu Qingqing, Jing Chunlei, Pei Yanliang, et al. Research on underwater image detail enhancement based on unsharp mask guided filtering[J]. Haiyang Xuebao, 2020, 42(7): 130−138.
    [7] Shuang Xuecheng, Zhang Jin, Tian Yu. Algorithms for improving the quality of underwater optical images: a comprehensive review[J]. Signal Processing, 2024, 219: 109408. doi: 10.1016/j.sigpro.2024.109408
    [8] Ancuti C O, Ancuti C, De Vleeschouwer C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1): 379−393. doi: 10.1109/TIP.2017.2759252
    [9] Xu Shuai, Zhang Jian, Qin Xin, et al. Deep Retinex decomposition network for underwater image enhancement[J]. Computers and Electrical Engineering, 2022, 100: 107822. doi: 10.1016/j.compeleceng.2022.107822
    [10] Chandrasekar A, Sreenivas M, Biswas S. PhISH-Net: physics inspired system for high resolution underwater image enhancement[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, USA: IEEE, 2024: 1495-1505.
    [11] Bi Pengfei, Xu Jian, Du Xue, et al. l2, p-norm sequential bilateral 2DPCA: a novel robust technology for underwater image classification and representation[J]. Neural Computing and Applications, 2020, 32(22): 17027−17041. doi: 10.1007/s00521-020-04936-1
    [12] Qiao Weibiao, Khishe M, Ravakhah S. Underwater targets classification using local wavelet acoustic pattern and multi-layer perceptron neural network optimized by modified whale optimization algorithm[J]. Ocean Engineering, 2021, 219: 108415. doi: 10.1016/j.oceaneng.2020.108415
    [13] Li Guohou, Wang Fangyuan, Zhou Ling, et al. MCANet: multi-channel attention network with multi-color space encoder for underwater image classification[J]. Computers and Electrical Engineering, 2023, 108: 108724. doi: 10.1016/j.compeleceng.2023.108724
    [14] Zhang Weidong, Yu Baiqiang, Li Guohou, et al. Unified multi-color-model-learning-based deep support vector machine for underwater image classification[J]. Engineering Applications of Artificial Intelligence, 2024, 138: 109437. doi: 10.1016/j.engappai.2024.109437
    [15] Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on image Processing, 2012, 21(4): 1756−1769. doi: 10.1109/TIP.2011.2179666
    [16] Wang Jiajie, Wan Minjie, Xu Yunkai, et al. Underwater image restoration via constrained color compensation and background light color space-based haze-line model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4211615. doi: 10.1109/tgrs.2024.3477911
    [17] He Kaiming, Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341−2353. doi: 10.1109/TPAMI.2010.168
    [18] Chao Liu, Wang Meng. Removal of water scattering[C]//2010 2nd International Conference on Computer Engineering and Technology. Chengdu: IEEE, 2010: V2-35-V2-39.
    [19] Drews Jr P, Do Nascimento E, Moraes F, et al. Transmission estimation in underwater single images[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Sydney, NSW, Australia: IEEE, 2013: 825-830.
    [20] Li Chongyi, Guo Chunle, Ren Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376−4389. doi: 10.1109/TIP.2019.2955241
    [21] Liu Risheng, Fan Xin, Zhu Ming, et al. Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4861−4875. doi: 10.1109/TCSVT.2019.2963772
    [22] Liu Chongwei, Li Haojie, Wang Shuchang, et al. A dataset and benchmark of underwater object detection for robot picking[C]//2021 IEEE International Conference on Multimedia & Expo Workshops. Shenzhen, China: IEEE, 2021: 1−6.
    [23] He Dan, Cai Zhanchuan, Zhou Dujuan, et al. Inter-channel correlation modeling and improved skewed histogram shifting for reversible data hiding in color images[J]. Mathematics, 2024, 12(9): 1283. doi: 10.3390/math12091283
    [24] Ulaby F T, Kouyate F, Brisco B, et al. Textural infornation in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(2): 235−245.
    [25] Baraldi A, Panniggiani F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 293−304.
    [26] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679−698.
    [27] Buchsbaum G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(1): 1−26. doi: 10.1016/0016-0032(80)90058-7
    [28] Jaffe J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101−111. doi: 10.1109/48.50695
    [29] Tan R T. Visibility in bad weather from a single image[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008: 1−8.
    [30] Gibson K B, Vo D T, Nguyen T Q. An investigation of dehazing effects on image and video coding[J]. IEEE Transactions on Image Processing, 2012, 21(2): 662−673. doi: 10.1109/TIP.2011.2166968
    [31] Zhang Weidong, Zhuang Peixian, Sun Haihan, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement[J]. IEEE Transactions on Image Processing, 2022, 31: 3997−4010. doi: 10.1109/TIP.2022.3177129
    [32] Jha M, Bhandari A K. CBLA: color-balanced locally adjustable underwater image enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5020911. doi: 10.1109/tim.2024.3396850
    [33] Berman D, Levy D, Avidan S, et al. Underwater single image color restoration using haze-lines and a new quantitative dataset[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2822−2837. doi: 10.1109/tpami.2020.2977624
    [34] Liu Risheng, Jiang Zhiying, Yang Shuzhou, et al. Twin adversarial contrastive learning for underwater image enhancement and beyond[J]. IEEE Transactions on Image Processing, 2022, 31: 4922−4936. doi: 10.1109/TIP.2022.3190209
    [35] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91−110. doi: 10.1023/B:VISI.0000029664.99615.94
    [36] Sheldrake T, Higgins O. Classification, segmentation and correlation of zoned minerals[J]. Computers & Geosciences, 2021, 156: 104876. doi: 10.1016/j.cageo.2021.104876
    [37] Liu Yi, Jiang Qiuping, Wang Xinyi, et al. Underwater image enhancement with cascaded contrastive learning[J]. IEEE Transactions on Multimedia, 2025, 27: 1512−1525. doi: 10.1109/TMM.2024.3521739
    [38] Hou Guojia, Li Nan, Zhuang Peixian, et al. Non-uniform illumination underwater image restoration via illumination channel sparsity prior[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(2): 799−814. doi: 10.1109/TCSVT.2023.3290363
    [39] Marques T P, Albu A B. L2UWE: a framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA: IEEE, 2020: 2286−2295.
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2026-02-13

目录

    /

    返回文章
    返回