Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
Xu Renhui,Wang Rujian,Xiao Wenshen, et al. Variations in clay mineral composition in the western Arctic Ocean since the mid-Pleistocene: Implications on changes in circulation and ice sheet development[J]. Haiyang Xuebao,2020, 42(9):50–60 doi: 10.3969/j.issn.0253-4193.2020.09.006
Citation: Xu Renhui,Wang Rujian,Xiao Wenshen, et al. Variations in clay mineral composition in the western Arctic Ocean since the mid-Pleistocene: Implications on changes in circulation and ice sheet development[J]. Haiyang Xuebao,2020, 42(9):50–60 doi: 10.3969/j.issn.0253-4193.2020.09.006

Variations in clay mineral composition in the western Arctic Ocean since the mid-Pleistocene: Implications on changes in circulation and ice sheet development

doi: 10.3969/j.issn.0253-4193.2020.09.006
  • Received Date: 2019-12-21
  • Rev Recd Date: 2020-03-27
  • Available Online: 2021-04-21
  • Publish Date: 2020-09-25
  • In this study, we investigated clay mineral assemblages together with other provenance indicators of Core ARC7-LIC retrieved from the southern Alpha Ridge, in order to reveal the changes in sediment deposition, ocean circulation in the western Arctic Ocean, and the development of surrounding ice sheet through the mid-late Pleistocene (~MIS 29). Changes in clay mineral composition in Core ARC7-LIC suggest a transition of Siberian sourced material during MIS 29−13 towards a North American sourced material during MIS 12−1. This transition reflects the change of the circulation in the western Arctic Ocean before and after the Mid-Brunhes Event, which features an amplification of glacial-interglacial cycles in the post Mid-Brunhes Event. An exceptionally high smectite peak characterizes MIS 12, which is inferred to be from North American source. Laurentide ice sheet discharges icebergs and fine material in the western Arctic Ocean since MIS 16. The amplitude of ice sheet growth and decay increases since MIS 12. During MIS 6, 4 and 3, the asynchronous variations of Ca/Al and kaolinite suggest heterogeneous development of Laurentide ice sheet on the Canadian Arctic Archipelago and Alaska-Mackenzie sides.
  • loading
  • [1]
    Moritz R E, Bitz C M, Steig E J. Dynamics of recent climate change in the Arctic[J]. Science, 2002, 297(5586): 1497−1502. doi: 10.1126/science.1076522
    [2]
    Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96.
    [3]
    Stroeve J C, Serreze M C, Holland M M, et al. The Arctic’s rapidly shrinking sea ice cover: A research synthesis[J]. Climatic Change, 2012, 110(3/4): 1005−1027.
    [4]
    Cronin T M, DeNinno L H, Polyak L, et al. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean[J]. Marine Micropaleontology, 2014, 111: 118−133. doi: 10.1016/j.marmicro.2014.05.001
    [5]
    Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 2018, 13(10): 103001. doi: 10.1088/1748-9326/aade56
    [6]
    Wang Rujian, Polyak L, Xiao Wenshen, et al. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales[J]. Quaternary Science Reviews, 2018, 181: 93−108. doi: 10.1016/j.quascirev.2017.12.006
    [7]
    Zhang Taoliang, Wang Rujian, Polyak L, et al. Enhanced deposition of coal fragments at the Chukchi margin, western Arctic Ocean: Implications for deglacial drainage history from the Laurentide Ice Sheet[J]. Quaternary Science Reviews, 2019, 218: 281−292. doi: 10.1016/j.quascirev.2019.06.029
    [8]
    Clark D L, Chern L A, Hogler J A, et al. Late Neogene climate evolution of the central Arctic Ocean[J]. Marine Geology, 1990, 93: 69−94. doi: 10.1016/0025-3227(90)90078-X
    [9]
    Proshutinsky A, Bourke R H, McLaughlin F A. The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales[J]. Geophysical Research Letters, 2002, 29(23): 15-1−15-4. doi: 10.1029/2002GL015847
    [10]
    Bischof J F, Darby D A. Mid- to Late Pleistocene ice drift in the western Arctic Ocean: Evidence for a different circulation in the past[J]. Science, 1997, 277(5322): 74−78. doi: 10.1126/science.277.5322.74
    [11]
    Jakobsson M, Nilsson J, Anderson L, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation[J]. Nature Communications, 2016, 7: 10365. doi: 10.1038/ncomms10365
    [12]
    Keigwin L D, Klotsko S, Zhao N, et al. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling[J]. Nature Geoscience, 2018, 11(8): 599−604. doi: 10.1038/s41561-018-0169-6
    [13]
    Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2008, 27(2): 114−127. doi: 10.1111/j.1751-8369.2008.00057.x
    [14]
    Deschamps C E, Montero-Serrano J C, St-Onge G. Sediment provenance changes in the western Arctic Ocean in response to ice rafting, sea level, and oceanic circulation variations since the last deglaciation[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2147−2165. doi: 10.1029/2017GC007411
    [15]
    Schreck M, Nam S I, Polyak L, et al. Improved Pleistocene sediment stratigraphy and paleoenvironmental implications for the western Arctic Ocean off the East Siberian and Chukchi margins[J]. Arktos, 2018, 4(1): 21. doi: 10.1007/s41063-018-0057-8
    [16]
    Larsen E, Kjær K H, Demidov I N, et al. Late Pleistocene glacial and lake history of northwestern Russia[J]. Boreas, 2006, 35(3): 394−424. doi: 10.1080/03009480600781958
    [17]
    Svendsen J I, Alexanderson H, Astakhov V I, et al. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews, 2004, 23(11/13): 1229−1271.
    [18]
    Dyke A S, Andrews J T, Clark P U, et al. The Laurentide and Innuitian ice sheets during the last glacial maximum[J]. Quaternary Science Reviews, 2002, 21(1/3): 9−31.
    [19]
    England J H, Furze M F A, Doupé J P. Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation[J]. Quaternary Science Reviews, 2009, 28(17/18): 1573−1596.
    [20]
    Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the East Siberian continental margin[J]. Nature Geoscience, 2013, 6(10): 842−846. doi: 10.1038/ngeo1904
    [21]
    Dong Lisen, Liu Yanguang, Shi Xuefa, et al. Sedimentary record from the Canada Basin, Arctic Ocean: Implications for late to middle Pleistocene glacial history[J]. Climate of the Past, 2017, 13(5): 511−531. doi: 10.5194/cp-13-511-2017
    [22]
    Miller G H, Alley R B, Brigham-Grette J, et al. Arctic amplification: can the past constrain the future?[J]. Quaternary Science Reviews, 2010, 29(15/16): 1779−1790.
    [23]
    Polyak L, Jakobsson M. Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges[J]. Oceanography, 2011, 24(3): 52−64. doi: 10.5670/oceanog.2011.55
    [24]
    Stein R. Arctic Ocean sediments: processes, proxies, and paleoenvironment[J]. Developments in Marine Geology, 2008, 2: 3. doi: 10.1016/S1572-5480(08)00001-8
    [25]
    Stärz M, Gong Xun, Stein R, et al. Glacial shortcut of Arctic sea-ice transport[J]. Earth and Planetary Science Letters, 2012, 357−358: 257−267. doi: 10.1016/j.jpgl.2012.09.033
    [26]
    Stein R, Fahl K, Gierz P, et al. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial[J]. Nature Communications, 2017, 8: 373. doi: 10.1038/s41467-017-00552-1
    [27]
    黄晓璇, 王汝建, 肖文申, 等. 西北冰洋楚科奇海台晚第四纪以来陆源沉积物搬运机制及其古环境意义[J]. 海洋地质与第四纪地质, 2018, 38(2): 52−62.

    Huang Xiaoxuan, Wang Rujian, Xiao Wenshen, et al. Transportation mechanism of terrigenous sediment and its paleoenvironmental implications on the Chukchi Plateau, western Arctic Ocean during the late Quaternary[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 52−62.
    [28]
    Bischof J, Clark D L, Vincent J S. Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean[J]. Paleoceanography and Paleoclimatology, 1996, 11(6): 743−756.
    [29]
    Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge[J]. Quaternary Science Reviews, 2014, 92: 140−154. doi: 10.1016/j.quascirev.2013.12.011
    [30]
    Darby D A, Bischof J F, Spielhagen R F, et al. Arctic ice export events and their potential impact on global climate during the late Pleistocene[J]. Paleoceanography and Paleoclimatology, 2002, 17(2): 15-1−15-17.
    [31]
    Stokes C R, Clark C D, Darby D A, et al. Late Pleistocene ice export events into the Arctic Ocean from the M'Clure strait ice stream, Canadian Arctic Archipelago[J]. Global and Planetary Change, 2005, 49(3/4): 139−162.
    [32]
    Wang Rujian, Xiao Wenshen, März C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean[J]. Global and Planetary Change, 2013, 108: 100−118. doi: 10.1016/j.gloplacha.2013.05.017
    [33]
    Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172(1/2): 91−115.
    [34]
    Darby D A, Myers W B, Jakobsson M, et al. Modern dirty sea ice characteristics and sources: the role of anchor ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09008.
    [35]
    Chamley H. Clay Sedimentology[M]. Berlin: Springer Science & Business Media, 2013.
    [36]
    Wang Rong, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions[J]. Geo-Marine Letters, 2016, 36(4): 259−270. doi: 10.1007/s00367-016-0445-7
    [37]
    陈志华, 石学法, 韩贻兵, 等. 北冰洋西部表层沉积物粘土矿物分布及环境指示意义[J]. 海洋科学进展, 2004, 22(4): 446−454. doi: 10.3969/j.issn.1671-6647.2004.04.006

    Chen Zhihua, Shi Xuefa, Han Yibing, et al. Clay mineral distributions in surface sediments from the western Arctic Ocean and their implications for sediment environments[J]. Advances in Marine Science, 2004, 22(4): 446−454. doi: 10.3969/j.issn.1671-6647.2004.04.006
    [38]
    董林森, 刘焱光, 石学法, 等. 西北冰洋表层沉积物黏土矿物分布特征及物质来源[J]. 海洋学报, 2014, 36(4): 22−32.

    Dong Linsen, Liu Yanguang, Shi Xuefa, et al. Distributions and sources of clay minerals in the surface sediments of the western Arctic Ocean[J]. Haiyang Xuebao, 2014, 36(4): 22−32.
    [39]
    邱中炎, 沈忠悦, 韩喜球. 北极圈海域表层沉积物的黏土矿物特征及其环境意义[J]. 海洋地质与第四纪地质, 2007, 27(3): 31−36.

    Qiu Zhongyan, Shen Zhongyue, Han Xiqiu. Clay minerals in surface sediments from Arctic Ocean and their environmental significance[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 31−36.
    [40]
    张德玉, 高爱国, 张道建. 楚科奇海–加拿大海盆表层沉积物中的粘土矿物[J]. 海洋科学进展, 2008, 26(2): 171−183. doi: 10.3969/j.issn.1671-6647.2008.02.007

    Zhang Deyu, Gao Aiguo, Zhang Daojian. Clay minerals in surface sediments from the Chukchi Sea and Canadian Basin[J]. Advances in Marine Science, 2008, 26(2): 171−183. doi: 10.3969/j.issn.1671-6647.2008.02.007
    [41]
    Reynolds R C Jr, Anderson D M. Cristobalite and clinoptilolite in bentonite beds of the Colville Group, northern Alaska[J]. Journal of Sedimentary Research, 1967, 37(3): 966−969. doi: 10.2110/jsr.37.966
    [42]
    Naidu A S, Burrell D C, Hood D W. Clay mineral composition and geologic significance of some Beaufort Sea sediments[J]. Journal of Sedimentary Research, 1971, 41(3): 691−694.
    [43]
    Darby D A. Kaolinite and other clay minerals in Arctic Ocean sediments[J]. Journal of Sedimentary Research, 1975, 45(1): 272−279.
    [44]
    Kobayashi D, Yamamoto M, Irino T, et al. Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period[J]. Polar Science, 2016, 10(4): 519−531. doi: 10.1016/j.polar.2016.07.005
    [45]
    Spielhagen R F, Baumann K H, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history[J]. Quaternary Science Reviews, 2004, 23(11/13): 1455−1483.
    [46]
    Liu Zhifei, Colin C, Huang Wei, et al. Climatic and tectonic controls on weathering in South China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05005.
    [47]
    Liu Zhifei, Colin C, Li Xiajing, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1/4): 48−60.
    [48]
    Hanslik D, Jakobsson M, Backman J, et al. Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections[J]. Quaternary Science Reviews, 2010, 29(25/26): 3430−3441.
    [49]
    Jakobsson M, Løvlie R, Arnold E M, et al. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean[J]. Global and Planetary Change, 2001, 31(1/4): 1−22.
    [50]
    Löwemark L, O'Regan M, Hanebuth T J J, et al. Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365−366: 192−208. doi: 10.1016/j.palaeo.2012.09.028
    [51]
    Jakobsson M, Løvlie R, Al-Hanbali H, et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology, 2000, 28(1): 23−26. doi: 10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2
    [52]
    Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1/2): 73−93.
    [53]
    Stein R, Matthiessen J, Niessen F, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97−121.
    [54]
    Xiao Wenshen, Polyak L, Wang Rujian, et al. Middle to Late Pleistocene Arctic paleoceanographic changes based on sedimentary records from Mendeleev Ridge and Makarov Basin[J]. Quaternary Science Reviews, 2020, 228: 106105. doi: 10.1016/j.quascirev.2019.106105
    [55]
    谢昕, 王汝建, 肖文申, 等. 西北冰洋及白令海沉积物颜色旋回与成因[J]. 科学通报, 2016, 61(16): 1828−1839.

    Xie Xin, Wang Rujian, Xiao Wenshen, et al. Sediment color cycles and their causes in the western Arctic Ocean and Bering Sea[J]. Chinese Science Bulletin, 2016, 61(16): 1828−1839.
    [56]
    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003.
    [57]
    Lazar K B, Polyak L. Pleistocene benthic foraminifers in the Arctic Ocean: implications for sea-ice and circulation history[J]. Marine Micropaleontology, 2016, 126: 19−30. doi: 10.1016/j.marmicro.2016.04.004
    [58]
    Cronin T M, Polyak L, Reed D, et al. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes[J]. Quaternary Science Reviews, 2013, 79: 157−167. doi: 10.1016/j.quascirev.2012.12.010
    [59]
    Hodell D A, Channell J E T, Curtis J H, et al. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~ 640 ka)?[J]. Paleoceanography and Paleoclimatology, 2008, 23(4): PA4218.
    [60]
    Polyak L, Best K M, Crawford K A, et al. Quaternary history of sea ice in the western Arctic Ocean based on foraminifera[J]. Quaternary Science Reviews, 2013, 79: 145−156. doi: 10.1016/j.quascirev.2012.12.018
    [61]
    Polyak L, Bischof J, Ortiz J D, et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean[J]. Global and Planetary Change, 2009, 68(1/2): 5−17.
    [62]
    Dipre G R, Polyak L, Kuznetsov A B, et al. Plio-Pleistocene sedimentary record from the Northwind Ridge: New insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma[J]. Arktos, 2018, 4(1): 24. doi: 10.1007/s41063-018-0054-y
    [63]
    Nürnberg D, Levitan M A, Pavlidis J A, et al. Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas[J]. Geologische Rundschau, 1995, 84(3): 665−682. doi: 10.1007/s005310050032
    [64]
    Kalinenko V V, Shelekhova E S, Wahsner M. Clay minerals in surface sediments of the East Siberian and Laptev Seas[C]//Surface Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and along the Eurasian Continental Margin. Berichte zur Polarforschung. Bremerhaven: Wegener Inst. Polar Meeresforsch., 1996, 212: 43-50.
    [65]
    Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting[J]. Continental Shelf Research, 2003, 23(11/13): 1175−1200.
    [66]
    Vogt C, Knies J. Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation—the clay mineral group smectite perspective[J]. Marine Geology, 2008, 250(3/4): 211−222.
    [67]
    Darby D A, Ortiz J D, Grosch C E, et al. 1, 500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift[J]. Nature Geoscience, 2012, 5(12): 897−900. doi: 10.1038/ngeo1629
    [68]
    Spielhagen R F, Bonani G, Eisenhauer A, et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets[J]. Geology, 1997, 25(9): 783−786. doi: 10.1130/0091-7613(1997)025<0783:AOEFLQ>2.3.CO;2
    [69]
    Barth A M, Clark P U, Bill N S, et al. Climate evolution across the Mid-Brunhes transition[J]. Climate of the Past, 2018, 14(12): 2071−2087. doi: 10.5194/cp-14-2071-2018
    [70]
    Winter B L, Johnson C M, Clark D L. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4181−4200. doi: 10.1016/S0016-7037(97)00215-9
    [71]
    Hodell D A, Kanfoush S L, Venz K A, et al. The mid-brunhes transition in ODP sites 1089 and 1090 (Subantarctic South Atlantic)[M]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington, D.C.: Geophysical Monograph Series, 2003, 137: 113−130.
    [72]
    Cronin T M, Dwyer G S, Caverly E K, et al. Enhanced Arctic amplification began at the mid-Brunhes event ~ 400, 000 years ago[J]. Scientific Reports, 2017, 7: 14475. doi: 10.1038/s41598-017-13821-2
    [73]
    Darby D A, Polyak L, Bauch H A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas–a review[J]. Progress in Oceanography, 2006, 71(2/4): 129−144.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (890) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return