Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
Zhang Yao,Liu Xu’nan,Liu Qiang, et al. Study on the risk and characteristics of rip currents over sandbars at South China’s recreational beaches[J]. Haiyang Xuebao,2020, 42(9):9–21 doi: 10.3969/j.issn.0253-4193.2020.09.002
Citation: Zhang Yao,Liu Xu’nan,Liu Qiang, et al. Study on the risk and characteristics of rip currents over sandbars at South China’s recreational beaches[J]. Haiyang Xuebao,2020, 42(9):9–21 doi: 10.3969/j.issn.0253-4193.2020.09.002

Study on the risk and characteristics of rip currents over sandbars at South China’s recreational beaches

doi: 10.3969/j.issn.0253-4193.2020.09.002
  • Received Date: 2019-06-14
  • Rev Recd Date: 2019-10-16
  • Available Online: 2021-04-21
  • Publish Date: 2020-09-25
  • In responding to deadly drowning accidents, China's first operational attempt on the rip current hazard prevention for coastal tourism was carried out by the National Marine Hazard Mitigation Service (NMHMS). A great number of recreational beaches in South China are found developing littoral sand bars and rip currents. Present paper, which is part of the nation-wide work, investigate the mechanism, characteristics, and evolution sandbar-induced rip current at three most visited beaches employing multi-techniques as complementary tools. The alongshore sandbar morphology, shorelines, and rip currents are highly dynamic with seasonal variations evidenced by the morphodynamic calculation and the satellite image interpretation. Unconventional contrary seasonal evolution of the rip current is identified at Qing’ao Bay with higher risk in cooler seasons. The rip current shows high sensitivity to the sandbar group pattern, the wave height, and the incident direction according to the phase-resolving hydrodynamic modelling. The wider rip channel between sandbars generated larger rip size compared to narrower gaps, but is not necessarily accompanied by stronger flow velocity. The rip current might be totally absent in small channels when majority of water flows out through neighboring broader pathways. The flow velocity is demonstrated proportional to the wave height and inversely proportional to the incident angle. Alongshore currents dominated over rip currents as the wave incident angle reached 10°−30° in the numerical simulation. It is verified in the field observation that the rip current is most hazardous at low tide when shallower water depth intensifies the topographic effect on waves and currents. The study result provides useful reference for the engineering mitigation and public warning of beach rip hazard. In near future, long time observation for specific sections of shoreline would be conducted to accumulate enough statistics for the rip current prediction and risk governance.
  • loading
  • [1]
    Dalrymple R A, MaCmahan J H, Reniers A J H M, et al. Rip currents[J]. Annual Review of Fluid Mechanics, 2011, 43(43): 551−581.
    [2]
    王彦, 邹志利. 海岸裂流的研究进展及其展望[J]. 海洋学报, 2014, 36(5): 170−176.

    Wang Yan, Zou Zhili. Progress and prospect of rip currents[J]. Haiyang Xuebao, 2014, 36(5): 170−176.
    [3]
    Drozdzewski D, Shaw W, Dominey-Howes D, et al. Surveying rip current survivors: Preliminary insights into the experiences of being caught in rip currents[J]. Natural Hazards and Earth System Sciences, 2012, 12(4): 1201−1211. doi: 10.5194/nhess-12-1201-2012
    [4]
    Alvarez-Euacuria A, Orfila A, Olabarrieta M, et al. A nearshore wave and current operational forecasting system[J]. Journal of Coastal Research, 2010, 26(3): 503−509.
    [5]
    Austin M, Scott T, Brown J, et al. Temporal observations of rip current circulation on a macro-tidal beach[J]. Continental Shelf Research, 2010, 30(9): 1149−1165. doi: 10.1016/j.csr.2010.03.005
    [6]
    Benassai G, Aucelli P, Budillon G, et al. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation[J]. Natural Hazards and Earth System Sciences, 2017, 17(9): 1493−1503. doi: 10.5194/nhess-17-1493-2017
    [7]
    Macmahan J H, Thornton E B, Reniers A J H M. Rip current review[J]. Coastal Engineering, 2006, 53(2/3): 191−208.
    [8]
    Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [9]
    Wright L D, Short A D, Green M O. Short-term changes in the morphodynamic states of beaches and surf zones: An empirical predictive model[J]. Marine Geology, 1985, 62(3/4): 339−364.
    [10]
    Masselink G, Short A D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model[J]. Journal of Coastal Research, 1993, 9(3): 785−800.
    [11]
    Scott T, Masselink G, Russell P. Morphodynamic characteristics and classification of beaches in England and wales[J]. Marine Geology, 2011, 286(1/4): 1−20.
    [12]
    Li Zhiqiang. Rip current hazards in South China headland beaches[J]. Ocean & Coastal Management, 2016, 121: 23−32.
    [13]
    Dusek G, Seim H. A probabilistic rip current forecast model[J]. Journal of Coastal Research, 2013, 289(4): 909−925.
    [14]
    王彦, 邹志利. 平直沙坝海岸叠加波浪的裂流试验[J]. 水科学进展, 2015, 26(1): 123−129.

    Wang Yan, Zou Zhili. Experimental study of rip currents by intersecting wave on barred beach[J]. Advances in Water Science, 2015, 26(1): 123−129.
    [15]
    彭石, 邹志利. 海岸裂流的浮子示踪法实验测量[J]. 水动力学研究与进展, 2012, 26(6): 645−651.

    Peng Shi, Zou Zhili. Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics, 2012, 26(6): 645−651.
    [16]
    Haller M C, Dalrymple R A, Svendsen I A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research: Oceans, 2002, 107(C6): 3061. doi: 10.1029/2001JC000955
    [17]
    Kennedy A B, Thomas D. Drifter measurements in a laboratory rip current[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08005.
    [18]
    Kennedy A B, Zhang Y. The stability of wave-driven rip current circulation[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3): C03031.
    [19]
    Castelle B, Michallet H, Marieu V, et al. Laboratory experiment on rip current circulations over a moveable bed: Drifter measurements[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12008. doi: 10.1029/2010JC006343
    [20]
    Suanda S H, Feddersen F. A self-similar scaling for cross-shelf exchange driven by transient rip currents[J]. Geophysical Research Letters, 2015, 42(13): 5427−5434. doi: 10.1002/2015GL063944
    [21]
    Weir B, Uchiyama Y, Lane E M, et al. A vortex force analysis of the interaction of rip currents and surface gravity waves[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05001.
    [22]
    Marchesiello P, Benshila R, Almar R, et al. On tridimensional rip current modeling[J]. Ocean Modelling, 2015, 96: 36−48. doi: 10.1016/j.ocemod.2015.07.003
    [23]
    Yu J, Chen S Y. Hydrodynamic instability mechanism for rip currents[J]. Studies in Applied Mathematics, 2015, 135(2): 196−223. doi: 10.1111/sapm.12074
    [24]
    Zhang Chi, Zhang Qingyang, Zheng Jinhai, et al. Parameterization of nearshore wave front slope[J]. Coastal Engineering, 2017, 127: 80−87. doi: 10.1016/j.coastaleng.2017.06.008
    [25]
    Schmidt W E, Woodward B T, Millikan K S, et al. A GPS-tracked surf zone drifter[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(7): 1069−1075. doi: 10.1175/1460.1
    [26]
    McCarroll R J, Brander R W, Turner I L, et al. Lagrangian observations of circulation on an embayed beach with headland rip currents[J]. Marine Geology, 2014, 355: 173−188. doi: 10.1016/j.margeo.2014.05.020
    [27]
    Scott T, Austin M, Masselink G, et al. Dynamics of rip currents associated with groynes—field measurements, modelling and implications for beach safety[J]. Coastal Engineering, 2016, 107: 53−69. doi: 10.1016/j.coastaleng.2015.09.013
    [28]
    MacMahan J, Thornton B E. Low-cost handheld global positioning system for measuring surf-zone currents[J]. Journal of Coastal Research, 2009, 25(3): 744−754.
    [29]
    MacMahan J H, Thornton E B, Stanton T P, et al. RIPEX: observations of a rip current system[J]. Marine Geology, 2005, 218(1/4): 113−134.
    [30]
    Radermacher M, De Schipper M A, Reniers A J H M. Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry[J]. Coastal Engineering, 2018, 135: 66−76. doi: 10.1016/j.coastaleng.2018.01.007
    [31]
    Holman R, Haller M C. Remote sensing of the nearshore[J]. Annual Review of Marine Science, 2013, 5(1): 95−113. doi: 10.1146/annurev-marine-121211-172408
    [32]
    Yoon S B, Park W K, Choi J. Observation of rip current velocity at an accidental event by using video image analysis[J]. Journal of Coastal Research, 2014, 72(S): 16−21.
    [33]
    Haller M C, Honegger D, Catalán P A. Rip current observations via marine radar[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140(2): 115−124. doi: 10.1061/(ASCE)WW.1943-5460.0000229
    [34]
    解鸣晓, 张玮. 近岸波生流运动三维数值模拟及验证[J]. 水科学进展, 2011, 22(3): 391−399.

    Xie Xiaoming, Zhang Wei. 3D numerical modeling of nearshore wave-induced currents[J]. Advances in Water Science, 2011, 22(3): 391−399.
    [35]
    胡日军, 吴建政, Ping Dong, 等. 海岸沙坝横向迁移研究综述[J]. 水科学进展, 2016, 27(5): 784−791.

    Hu Rijun, Wu Jianzheng, Ping Dong, et al. A review of cross-shore migration of nearshore sandbar[J]. Advances in Water Science, 2016, 27(5): 784−791.
    [36]
    房克照, 尹继伟, 邹志利. 单沟槽沙坝海岸的裂流实验研究[J]. 水动力学研究与进展, 2013, 28(3): 363−369.

    Fang Kezhao, Yin Jiwei, Zou Zhili. Experiment study on rip current of barred beach with a single channel[J]. Chinese Journal of Hydrodynamics, 2013, 28(3): 363−369.
    [37]
    孟凡昌, 李本霞. 裂流的研究综述[J]. 海洋预报, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011

    Meng Fanchang, Li Benxia. Review on the study of the rip current[J]. Marine Forecasts, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011
    [38]
    Moulton M, Dusek G, Elgar S, et al. Comparison of rip current hazard likelihood forecasts with observed rip current speeds[J]. Weather and Forecasting, 2017, 32(4): 1659−1666. doi: 10.1175/WAF-D-17-0076.1
    [39]
    张弛, 郑金海, 王义刚. 波浪作用下沙坝剖面形成过程的数值模拟[J]. 水科学进展, 2012, 23(1): 104−109.

    Zhang Chi, Zheng Jinhai, Wang Yigang. Numerical simulation of wave-induced sandbar formation[J]. Advances in Water Science, 2012, 23(1): 104−109.
    [40]
    Zheng Jinhai, Zhang Chi, Demirbilek Z, et al. Numerical study of sandbar migration under wave-undertow interaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140(2): 146−159. doi: 10.1061/(ASCE)WW.1943-5460.0000231
    [41]
    房克照, 邹志利, 刘忠波. 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26(4): 479−486.

    Fang Kezhao, Zou Zhili, Liu Zhongbo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479−486.
    [42]
    Haas K A, Svendsen I A, Haller M C, et al. Quasi-three-dimensional modeling of rip current systems[J]. Journal of Geophysical Research: Oceans, 2003, 108(C7): 3217. doi: 10.1029/2002JC001355
    [43]
    Long J W, Özkan-Haller H T. Offshore controls on nearshore rip currents[J]. Journal of Geophysical Research: Oceans, 2005, 110(C12): C12007. doi: 10.1029/2005JC003018
    [44]
    Johnson D, Pattiaratchi C. Boussinesq modelling of transient rip currents[J]. Coastal Engineering, 2006, 53(5/6): 419−439.
    [45]
    Zhang Yao, Kennedy A B, Tomiczek T, et al. Validation of Boussinesq–Green–Naghdi modeling for surf zone hydrodynamics[J]. Ocean Engineering, 2016, 111: 299−309. doi: 10.1016/j.oceaneng.2015.11.004
    [46]
    Shi Fengyan, Kirby J T, Harris J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43−44: 36−51. doi: 10.1016/j.ocemod.2011.12.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (350) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return