Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 7
Nov.  2020
Turn off MathJax
Article Contents
Tian Fei,Wang Zhaomin,Gavilan Estanislao, et al. Effects of the Arctic river runoff on the Arctic Ocean circulation[J]. Haiyang Xuebao,2020, 42(7):1–15 doi: 10.3969/j.issn.0253-4193.2020.07.001
Citation: Tian Fei,Wang Zhaomin,Gavilan Estanislao, et al. Effects of the Arctic river runoff on the Arctic Ocean circulation[J]. Haiyang Xuebao,2020, 42(7):1–15 doi: 10.3969/j.issn.0253-4193.2020.07.001

Effects of the Arctic river runoff on the Arctic Ocean circulation

doi: 10.3969/j.issn.0253-4193.2020.07.001
  • Received Date: 2020-01-08
  • Rev Recd Date: 2020-04-26
  • Available Online: 2020-11-18
  • Publish Date: 2020-07-25
  • River runoff plays a dominant role in the freshwater flux to the Arctic Ocean, and the corresponding changes in river runoff may have important effects on many processes in the Arctic Ocean. In this study, the sensitivity of ocean temperature, salinity, sea ice and circulation to river runoff was investigated by using a global high-resolution coupled ocean-sea ice model. By comparing the simulated results from a sensitivity experiment without river runoff with the results from a control simulation with climatology river runoff, we found that the river runoff can significantly modulate the temperature, salinity, sea ice, and ocean currents in the Arctic Ocean. In the sensitivity experiment without river runoff, the sea surface temperature on the shelf near the estuaries decreases, and the salinity increases. At 500 m depth, the temperature decreases, and the salinity increases in the sensitivity experiment. The sea ice concentration and thickness also increase near the estuaries in the sensitivity experiment. The shutdown of the river runoff also has an impact on the circulation, which leads to weaker and fresher East Greenland Current and the Transpolar Drift Stream. The shutdown of runoff forcing can also slow down the Arctic Circumpolar Boundary Current along the Eurasian Shelf and speed up the Bering Strait inflow by lowering the sea surface height in the shelf seas. In the sensitive experiment, a colder Atlantic layer, a smaller salinity gradient and a thinner upper halocline can be identified by comparing with the temperature and salinity profiles from the control experiment.
  • loading
  • [1]
    Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298(5601): 2171−2173. doi: 10.1126/science.1077445
    [2]
    Spall M A. On the circulation of Atlantic water in the Arctic Ocean[J]. Journal of Physical Oceanography, 2013, 43(11): 2352−2371. doi: 10.1175/JPO-D-13-079.1
    [3]
    Rudels B. Arctic Ocean circulation, processes and water masses: A description of observations and ideas with focus on the period prior to the International Polar Year 2007-2009[J]. Progress in Oceanography, 2015, 132: 22−67. doi: 10.1016/j.pocean.2013.11.006
    [4]
    Rawlins M A, Steele M, Holland M M, et al. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations[J]. Journal of Climate, 2010, 23(21): 5715−5737. doi: 10.1175/2010JCLI3421.1
    [5]
    Nummelin A, Ilicak M, Li C, et al. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 617−637. doi: 10.1002/2015JC011156
    [6]
    Pemberton P, Nilsson J. The response of the central Arctic Ocean stratification to freshwater perturbations[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 792−817. doi: 10.1002/2015JC011003
    [7]
    Schlosser P, Newton R, Ekwurzel B, et al. Decrease of river runoff in the upper waters of the Eurasian Basin, Arctic Ocean, between 1991 and 1996: Evidence from δ18O data[J]. Geophysical Research Letters, 2002, 29(9): 1894.
    [8]
    Woodgate R A, Aagaard K, Weingartner T J. Monthly temperature, salinity, and transport variability of the Bering Strait through flow[J]. Geophysical Research Letters, 2005, 32(4): L04601.
    [9]
    Condron A, Winsor P, Hill C, et al. Simulated response of the Arctic freshwater budget to extreme NAO wind forcing[J]. Journal of Climate, 2009, 22(9): 2422−2437. doi: 10.1175/2008JCLI2626.1
    [10]
    Serreze M C, Barrett A P, Slater A G, et al. The large-scale freshwater cycle of the Arctic[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11010. doi: 10.1029/2005JC003424
    [11]
    赵进平, 史久新. 北极环极边界流研究及其主要科学问题[J]. 极地研究, 2004, 16(3): 159−170.

    Zhao Jinping, Shi Jiuxin. Research progresses and main scientific issues in studies for Arctic circumpolar boundary current[J]. Chinese Journal of Polar Research, 2004, 16(3): 159−170.
    [12]
    史久新, 赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351−357. doi: 10.3321/j.issn:1001-8166.2003.03.005

    Shi Jiuxin, Zhao Jinping. Adcances in studies on the Arctic halocline[J]. Advance in Earth Sciences, 2003, 18(3): 351−357. doi: 10.3321/j.issn:1001-8166.2003.03.005
    [13]
    Nummelin A, Li C, Smedsrud L H. Response of Arctic Ocean stratification to changing river runoff in a column model[J]. Journal of Geophysical Research: Oceans, 2015, 120(4): 2655−2675. doi: 10.1002/2014JC010571
    [14]
    Björk G, Söderkvist J, Winsor P, et al. Return of the cold halocline layer to the Amundsen Basin of the Arctic Ocean: Implications for the sea ice mass balance[J]. Geophysical Research Letters, 2002, 29(11): 8-1−8-4.
    [15]
    Newton R, Schlosser P, Martinson D G, et al. Freshwater distribution in the Arctic Ocean: Simulation with a high-resolution model and model-data comparison[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05024.
    [16]
    Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 1998, 103(C5): 10419−10435. doi: 10.1029/98JC00580
    [17]
    Lambert E, Nummelin A, Pemberton P, et al. Tracing the imprint of river runoff variability on Arctic water mass transformation[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 302−319. doi: 10.1029/2017JC013704
    [18]
    Jahn A, Tremblay L B, Newton R, et al. A tracer study of the Arctic Ocean's liquid freshwater export variability[J]. Journal of Geophysical Research: Oceans, 2010, 115(C7): C07015.
    [19]
    Mu Longjiang, Zhao Jinping, Zhong Wenli. Regime shift of the dominant factor for halocline depth in the Canada Basin during 1990−2008[J]. Acta Oceanologica Sinica, 2017, 36(1): 35−43. doi: 10.1007/s13131-016-0883-0
    [20]
    Aagaard K, Roach A T, Schumacher J D. On the wind-driven variability of the flow through Bering Strait[J]. Journal of Geophysical Research: Oceans, 1985, 90(C4): 7213−7221. doi: 10.1029/JC090iC04p07213
    [21]
    Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation[J]. Journal of Geophysical Research: Oceans, 1989, 94(C10): 14485−14498. doi: 10.1029/JC094iC10p14485
    [22]
    Arzel O, Fichefet T, Goosse H, et al. Causes and impacts of changes in the Arctic freshwater budget during the twentieth and twenty-first centuries in an AOGCM[J]. Climate Dynamics, 2008, 30(1): 37−58.
    [23]
    Häkkinen S. Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing[J]. Journal of Geophysical Research: Oceans, 1995, 100(C3): 4761−4770. doi: 10.1029/94JC01900
    [24]
    Holland M M, Bitz C M, Eby M, et al. The role of ice–ocean interactions in the variability of the North Atlantic thermohaline circulation[J]. Journal of Climate, 2001, 14(5): 656−675. doi: 10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2
    [25]
    Manabe S, Stouffer R J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean[J]. Nature, 1995, 378(6553): 165−167. doi: 10.1038/378165a0
    [26]
    Rennermalm A K, Wood E F, Déry S J, et al. Sensitivity of the thermohaline circulation to Arctic Ocean runoff[J]. Geophysical Research Letters, 2006, 33(12): L12703. doi: 10.1029/2006GL026124
    [27]
    Rennermalm A K, Wood E F, Weaver A J, et al. Relative sensitivity of the Atlantic meridional overturning circulation to river discharge into Hudson Bay and the Arctic Ocean[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G4): G04S48.
    [28]
    Weaver A J, Marotzke J, Cummins P F, et al. Stability and variability of the thermohaline circulation[J]. Journal of Physical Oceanography, 1993, 23(1): 39−60. doi: 10.1175/1520-0485(1993)023<0039:SAVOTT>2.0.CO;2
    [29]
    Stocker T F, Timmermann A, Renold M, et al. Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic meridional overturning circulation[J]. Journal of Climate, 2007, 20(24): 5912−5928. doi: 10.1175/2007JCLI1662.1
    [30]
    Stouffer R J, Yin J, Gregory J M, et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes[J]. Journal of Climate, 2006, 19(8): 1365−1387. doi: 10.1175/JCLI3689.1
    [31]
    Mignot J, Ganopolski A, Levermann A. Atlantic subsurface temperatures: Response to a shutdown of the overturning circulation and consequences for its recovery[J]. Journal of Climate, 2007, 20(19): 4884−4898. doi: 10.1175/JCLI4280.1
    [32]
    Whitefield J, Winsor P, McClelland J, et al. A new river discharge and river temperature climatology data set for the pan-Arctic region[J]. Ocean Modelling, 2015, 88: 1−15. doi: 10.1016/j.ocemod.2014.12.012
    [33]
    Brown N J, Nilsson J, Pemberton P. Arctic Ocean freshwater dynamics: transient response to increasing river runoff and precipitation[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5205−5219. doi: 10.1029/2018JC014923
    [34]
    牟龙江, 赵进平. 北极冰海耦合模式对两种不同大气再分析资料响应的分析[J]. 海洋学报, 2015, 37(11): 79−91.

    Mu Longjiang, Zhao Jinping. Analysis on the response of an Arctic ice-ocean coupled model to two different atmospheric reanalysis datasets[J]. Haiyang Xuebao, 2015, 37(11): 79−91.
    [35]
    杨清华, 刘骥平, 张占海, 等. 北极海冰数值预报的初步研究——基于海冰−海洋耦合模式MITgcm的模拟试验[J]. 大气科学, 2011, 35(3): 473−482. doi: 10.3878/j.issn.1006-9895.2011.03.08

    Yang Qinghua, Liu Jiping, Zhang Zhanhai, et al. A preliminary study of the Arctic sea ice numerical forecasting: coupled sea ice-ocean modelling experiments based on MITgcm[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(3): 473−482. doi: 10.3878/j.issn.1006-9895.2011.03.08
    [36]
    Zhang Yu, Chen Changsheng, Beardsley R C, et al. Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings: results from AO-FVCOM[J]. Journal of Geophysical Research Oceans, 2016, 121(6): 4392−4415. doi: 10.1002/2016JC011634
    [37]
    Yang Qinghua, Loza S, Losch M, et al. Improving the Arctic sea-ice numerical forecasts by assimilation using a local SEIK filter[C]//International Symposium on Sea Ice in a Changing Environment, Hobart, Australia, 10 March 2014 - 14 March 2014.
    [38]
    Mu Longjiang, Liang Xi, Yang Qinghua, et al. Arctic Ice Ocean prediction system: evaluating sea-ice forecasts during Xuelong's first trans-Arctic Passage in summer 2017[J]. Journal of Glaciology, 2019, 65(253): 813−821. doi: 10.1017/jog.2019.55
    [39]
    Gao Guoping, Chen Changsheng, Qi Jianhua, et al. An unstructured-grid, finite-volume sea ice model: Development, validation, and application[J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): C00D04.
    [40]
    Zhang Yu, Chen Changsheng, Beardsley R C, et al. Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 8320−8350. doi: 10.1002/2016JC011841
    [41]
    Pemberton P, Nilsson J, Hieronymus M, et al. Arctic Ocean water mass transformation in S–T coordinates[J]. Journal of Physical Oceanography, 2015, 45(4): 1025−1050. doi: 10.1175/JPO-D-14-0197.1
    [42]
    Marshall J C, Scott J R, Proshutinsky A. 'Climate Response Functions' for the Arctic Ocean: a proposed coordinated modeling experiment[J]. Geoscientific Model Development Discussions, 2017, 10(7): 1−25.
    [43]
    Menemenlis D, Campin J M, Heimbach P, et al. ECCO2: High resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newsletter, 2008, 31: 13−21.
    [44]
    Marshall J, Adcroft A, Hill C, et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers[J]. Journal of Geophysical Research: Oceans, 1997, 102(C3): 5753−5766. doi: 10.1029/96JC02775
    [45]
    Adcroft A, Campin J M, Hill C, et al. Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube[J]. Monthly Weather Review, 2004, 132(12): 2845−2863. doi: 10.1175/MWR2823.1
    [46]
    Nurser A J G, Bacon S. The Rossby radius in the Arctic Ocean[J]. Ocean Science, 2014, 10(6): 967−975. doi: 10.5194/os-10-967-2014
    [47]
    Ebita A, Kobayashi S, Ota Y, et al. The Japanese 55-year reanalysis “JRA-55”: an interim report[J]. Sola, 2011, 7: 149−152. doi: 10.2151/sola.2011-038
    [48]
    Steele M, Morley R, Ermold W. PHC: A global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9): 2079−2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
    [49]
    Komuro Y. The impact of surface mixing on the Arctic river water distribution and stratification in a global ice–ocean model[J]. Journal of Climate, 2014, 27(12): 4359−4370. doi: 10.1175/JCLI-D-13-00090.1
    [50]
    Nguyen A T, Menemenlis D, Kwok R. Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization[J]. Journal of Geophysical Research: Oceans, 2009, 114(C11): C11014. doi: 10.1029/2008JC005121
    [51]
    Manizza M, Follows M J, Dutkiewicz S, et al. Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean[J]. Global Biogeochemical Cycles, 2009, 23(4): GB4006.
    [52]
    Nguyen A T, Menemenlis D, Kwok R. Arctic ice-ocean simulation with optimized model parameters: Approach and assessment[J]. Journal of Geophysical Research: Oceans, 2011, 116(C4): C04025.
    [53]
    Nguyen A T, Kwok R, Menemenlis D. Source and pathway of the Western Arctic upper halocline in a data-constrained coupled ocean and sea ice model[J]. Journal of Physical Oceanography, 2012, 42(5): 802−823. doi: 10.1175/JPO-D-11-040.1
    [54]
    Huhn O, Hellmer H, Rhein M, et al. Evidence of deep- and bottom-water formation in the western Weddell Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(8/9): 1098−1116.
    [55]
    Smith H J. Runoff in the Arctic[J]. Science, 2013, 339(6119): 491−491.
    [56]
    Inoue J, Kikuchi T. Outflow of summertime Arctic sea ice observed by ice drifting buoys and its linkage with ice reduction and atmospheric circulation patterns[J]. Journal of the Meteorological Society of Japan, 2007, 85(6): 881−887. doi: 10.2151/jmsj.85.881
    [57]
    Wang Xiaoyu, Zhao Jinping. Seasonal and inter-annual variations of the primary types of the Arctic sea-ice drifting patterns[J]. Advances in Polar Science, 2012, 23(2): 72−81.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (609) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return